Metamath Proof Explorer


Theorem imasf1omet

Description: The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses imasf1oxmet.u φ U = F 𝑠 R
imasf1oxmet.v φ V = Base R
imasf1oxmet.f φ F : V 1-1 onto B
imasf1oxmet.r φ R Z
imasf1oxmet.e E = dist R V × V
imasf1oxmet.d D = dist U
imasf1omet.m φ E Met V
Assertion imasf1omet φ D Met B

Proof

Step Hyp Ref Expression
1 imasf1oxmet.u φ U = F 𝑠 R
2 imasf1oxmet.v φ V = Base R
3 imasf1oxmet.f φ F : V 1-1 onto B
4 imasf1oxmet.r φ R Z
5 imasf1oxmet.e E = dist R V × V
6 imasf1oxmet.d D = dist U
7 imasf1omet.m φ E Met V
8 metxmet E Met V E ∞Met V
9 7 8 syl φ E ∞Met V
10 1 2 3 4 5 6 9 imasf1oxmet φ D ∞Met B
11 f1ofo F : V 1-1 onto B F : V onto B
12 3 11 syl φ F : V onto B
13 eqid dist R = dist R
14 1 2 12 4 13 6 imasdsfn φ D Fn B × B
15 1 adantr φ a V b V U = F 𝑠 R
16 2 adantr φ a V b V V = Base R
17 3 adantr φ a V b V F : V 1-1 onto B
18 4 adantr φ a V b V R Z
19 9 adantr φ a V b V E ∞Met V
20 simprl φ a V b V a V
21 simprr φ a V b V b V
22 15 16 17 18 5 6 19 20 21 imasdsf1o φ a V b V F a D F b = a E b
23 metcl E Met V a V b V a E b
24 23 3expb E Met V a V b V a E b
25 7 24 sylan φ a V b V a E b
26 22 25 eqeltrd φ a V b V F a D F b
27 26 ralrimivva φ a V b V F a D F b
28 f1ofn F : V 1-1 onto B F Fn V
29 3 28 syl φ F Fn V
30 oveq2 y = F b F a D y = F a D F b
31 30 eleq1d y = F b F a D y F a D F b
32 31 ralrn F Fn V y ran F F a D y b V F a D F b
33 29 32 syl φ y ran F F a D y b V F a D F b
34 forn F : V onto B ran F = B
35 12 34 syl φ ran F = B
36 35 raleqdv φ y ran F F a D y y B F a D y
37 33 36 bitr3d φ b V F a D F b y B F a D y
38 37 ralbidv φ a V b V F a D F b a V y B F a D y
39 27 38 mpbid φ a V y B F a D y
40 oveq1 x = F a x D y = F a D y
41 40 eleq1d x = F a x D y F a D y
42 41 ralbidv x = F a y B x D y y B F a D y
43 42 ralrn F Fn V x ran F y B x D y a V y B F a D y
44 29 43 syl φ x ran F y B x D y a V y B F a D y
45 35 raleqdv φ x ran F y B x D y x B y B x D y
46 44 45 bitr3d φ a V y B F a D y x B y B x D y
47 39 46 mpbid φ x B y B x D y
48 ffnov D : B × B D Fn B × B x B y B x D y
49 14 47 48 sylanbrc φ D : B × B
50 ismet2 D Met B D ∞Met B D : B × B
51 10 49 50 sylanbrc φ D Met B