Metamath Proof Explorer


Theorem imasf1oms

Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses imasf1obl.u φ U = F 𝑠 R
imasf1obl.v φ V = Base R
imasf1obl.f φ F : V 1-1 onto B
imasf1oms.r φ R MetSp
Assertion imasf1oms φ U MetSp

Proof

Step Hyp Ref Expression
1 imasf1obl.u φ U = F 𝑠 R
2 imasf1obl.v φ V = Base R
3 imasf1obl.f φ F : V 1-1 onto B
4 imasf1oms.r φ R MetSp
5 msxms R MetSp R ∞MetSp
6 4 5 syl φ R ∞MetSp
7 1 2 3 6 imasf1oxms φ U ∞MetSp
8 eqid dist R V × V = dist R V × V
9 eqid dist U = dist U
10 eqid Base R = Base R
11 eqid dist R Base R × Base R = dist R Base R × Base R
12 10 11 msmet R MetSp dist R Base R × Base R Met Base R
13 4 12 syl φ dist R Base R × Base R Met Base R
14 2 sqxpeqd φ V × V = Base R × Base R
15 14 reseq2d φ dist R V × V = dist R Base R × Base R
16 2 fveq2d φ Met V = Met Base R
17 13 15 16 3eltr4d φ dist R V × V Met V
18 1 2 3 4 8 9 17 imasf1omet φ dist U Met B
19 f1ofo F : V 1-1 onto B F : V onto B
20 3 19 syl φ F : V onto B
21 1 2 20 4 imasbas φ B = Base U
22 21 fveq2d φ Met B = Met Base U
23 18 22 eleqtrd φ dist U Met Base U
24 ssid Base U Base U
25 metres2 dist U Met Base U Base U Base U dist U Base U × Base U Met Base U
26 23 24 25 sylancl φ dist U Base U × Base U Met Base U
27 eqid TopOpen U = TopOpen U
28 eqid Base U = Base U
29 eqid dist U Base U × Base U = dist U Base U × Base U
30 27 28 29 isms U MetSp U ∞MetSp dist U Base U × Base U Met Base U
31 7 26 30 sylanbrc φ U MetSp