Metamath Proof Explorer


Theorem imasf1oxms

Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses imasf1obl.u φ U = F 𝑠 R
imasf1obl.v φ V = Base R
imasf1obl.f φ F : V 1-1 onto B
imasf1oxms.r φ R ∞MetSp
Assertion imasf1oxms φ U ∞MetSp

Proof

Step Hyp Ref Expression
1 imasf1obl.u φ U = F 𝑠 R
2 imasf1obl.v φ V = Base R
3 imasf1obl.f φ F : V 1-1 onto B
4 imasf1oxms.r φ R ∞MetSp
5 eqid dist R V × V = dist R V × V
6 eqid dist U = dist U
7 eqid Base R = Base R
8 eqid dist R Base R × Base R = dist R Base R × Base R
9 7 8 xmsxmet R ∞MetSp dist R Base R × Base R ∞Met Base R
10 4 9 syl φ dist R Base R × Base R ∞Met Base R
11 2 sqxpeqd φ V × V = Base R × Base R
12 11 reseq2d φ dist R V × V = dist R Base R × Base R
13 2 fveq2d φ ∞Met V = ∞Met Base R
14 10 12 13 3eltr4d φ dist R V × V ∞Met V
15 1 2 3 4 5 6 14 imasf1oxmet φ dist U ∞Met B
16 f1ofo F : V 1-1 onto B F : V onto B
17 3 16 syl φ F : V onto B
18 1 2 17 4 imasbas φ B = Base U
19 18 fveq2d φ ∞Met B = ∞Met Base U
20 15 19 eleqtrd φ dist U ∞Met Base U
21 ssid Base U Base U
22 xmetres2 dist U ∞Met Base U Base U Base U dist U Base U × Base U ∞Met Base U
23 20 21 22 sylancl φ dist U Base U × Base U ∞Met Base U
24 eqid TopOpen R = TopOpen R
25 eqid TopOpen U = TopOpen U
26 1 2 17 4 24 25 imastopn φ TopOpen U = TopOpen R qTop F
27 24 7 8 xmstopn R ∞MetSp TopOpen R = MetOpen dist R Base R × Base R
28 4 27 syl φ TopOpen R = MetOpen dist R Base R × Base R
29 12 fveq2d φ MetOpen dist R V × V = MetOpen dist R Base R × Base R
30 28 29 eqtr4d φ TopOpen R = MetOpen dist R V × V
31 30 oveq1d φ TopOpen R qTop F = MetOpen dist R V × V qTop F
32 blbas dist R V × V ∞Met V ran ball dist R V × V TopBases
33 14 32 syl φ ran ball dist R V × V TopBases
34 unirnbl dist R V × V ∞Met V ran ball dist R V × V = V
35 f1oeq2 ran ball dist R V × V = V F : ran ball dist R V × V 1-1 onto B F : V 1-1 onto B
36 14 34 35 3syl φ F : ran ball dist R V × V 1-1 onto B F : V 1-1 onto B
37 3 36 mpbird φ F : ran ball dist R V × V 1-1 onto B
38 eqid ran ball dist R V × V = ran ball dist R V × V
39 38 tgqtop ran ball dist R V × V TopBases F : ran ball dist R V × V 1-1 onto B topGen ran ball dist R V × V qTop F = topGen ran ball dist R V × V qTop F
40 33 37 39 syl2anc φ topGen ran ball dist R V × V qTop F = topGen ran ball dist R V × V qTop F
41 eqid MetOpen dist R V × V = MetOpen dist R V × V
42 41 mopnval dist R V × V ∞Met V MetOpen dist R V × V = topGen ran ball dist R V × V
43 14 42 syl φ MetOpen dist R V × V = topGen ran ball dist R V × V
44 43 oveq1d φ MetOpen dist R V × V qTop F = topGen ran ball dist R V × V qTop F
45 eqid MetOpen dist U = MetOpen dist U
46 45 mopnval dist U ∞Met B MetOpen dist U = topGen ran ball dist U
47 15 46 syl φ MetOpen dist U = topGen ran ball dist U
48 xmetf dist U ∞Met Base U dist U : Base U × Base U *
49 20 48 syl φ dist U : Base U × Base U *
50 ffn dist U : Base U × Base U * dist U Fn Base U × Base U
51 fnresdm dist U Fn Base U × Base U dist U Base U × Base U = dist U
52 49 50 51 3syl φ dist U Base U × Base U = dist U
53 52 fveq2d φ MetOpen dist U Base U × Base U = MetOpen dist U
54 3 ad2antrr φ x B y V r * F : V 1-1 onto B
55 f1of1 F : V 1-1 onto B F : V 1-1 B
56 54 55 syl φ x B y V r * F : V 1-1 B
57 cnvimass F -1 x dom F
58 f1odm F : V 1-1 onto B dom F = V
59 54 58 syl φ x B y V r * dom F = V
60 57 59 sseqtrid φ x B y V r * F -1 x V
61 14 ad2antrr φ x B y V r * dist R V × V ∞Met V
62 simprl φ x B y V r * y V
63 simprr φ x B y V r * r *
64 blssm dist R V × V ∞Met V y V r * y ball dist R V × V r V
65 61 62 63 64 syl3anc φ x B y V r * y ball dist R V × V r V
66 f1imaeq F : V 1-1 B F -1 x V y ball dist R V × V r V F F -1 x = F y ball dist R V × V r F -1 x = y ball dist R V × V r
67 56 60 65 66 syl12anc φ x B y V r * F F -1 x = F y ball dist R V × V r F -1 x = y ball dist R V × V r
68 54 16 syl φ x B y V r * F : V onto B
69 simplr φ x B y V r * x B
70 foimacnv F : V onto B x B F F -1 x = x
71 68 69 70 syl2anc φ x B y V r * F F -1 x = x
72 1 ad2antrr φ x B y V r * U = F 𝑠 R
73 2 ad2antrr φ x B y V r * V = Base R
74 4 ad2antrr φ x B y V r * R ∞MetSp
75 72 73 54 74 5 6 61 62 63 imasf1obl φ x B y V r * F y ball dist U r = F y ball dist R V × V r
76 75 eqcomd φ x B y V r * F y ball dist R V × V r = F y ball dist U r
77 71 76 eqeq12d φ x B y V r * F F -1 x = F y ball dist R V × V r x = F y ball dist U r
78 67 77 bitr3d φ x B y V r * F -1 x = y ball dist R V × V r x = F y ball dist U r
79 78 2rexbidva φ x B y V r * F -1 x = y ball dist R V × V r y V r * x = F y ball dist U r
80 3 adantr φ x B F : V 1-1 onto B
81 f1ofn F : V 1-1 onto B F Fn V
82 oveq1 z = F y z ball dist U r = F y ball dist U r
83 82 eqeq2d z = F y x = z ball dist U r x = F y ball dist U r
84 83 rexbidv z = F y r * x = z ball dist U r r * x = F y ball dist U r
85 84 rexrn F Fn V z ran F r * x = z ball dist U r y V r * x = F y ball dist U r
86 80 81 85 3syl φ x B z ran F r * x = z ball dist U r y V r * x = F y ball dist U r
87 forn F : V onto B ran F = B
88 80 16 87 3syl φ x B ran F = B
89 88 rexeqdv φ x B z ran F r * x = z ball dist U r z B r * x = z ball dist U r
90 79 86 89 3bitr2d φ x B y V r * F -1 x = y ball dist R V × V r z B r * x = z ball dist U r
91 14 adantr φ x B dist R V × V ∞Met V
92 blrn dist R V × V ∞Met V F -1 x ran ball dist R V × V y V r * F -1 x = y ball dist R V × V r
93 91 92 syl φ x B F -1 x ran ball dist R V × V y V r * F -1 x = y ball dist R V × V r
94 15 adantr φ x B dist U ∞Met B
95 blrn dist U ∞Met B x ran ball dist U z B r * x = z ball dist U r
96 94 95 syl φ x B x ran ball dist U z B r * x = z ball dist U r
97 90 93 96 3bitr4d φ x B F -1 x ran ball dist R V × V x ran ball dist U
98 97 pm5.32da φ x B F -1 x ran ball dist R V × V x B x ran ball dist U
99 f1ofo F : ran ball dist R V × V 1-1 onto B F : ran ball dist R V × V onto B
100 37 99 syl φ F : ran ball dist R V × V onto B
101 38 elqtop2 ran ball dist R V × V TopBases F : ran ball dist R V × V onto B x ran ball dist R V × V qTop F x B F -1 x ran ball dist R V × V
102 33 100 101 syl2anc φ x ran ball dist R V × V qTop F x B F -1 x ran ball dist R V × V
103 blf dist U ∞Met B ball dist U : B × * 𝒫 B
104 frn ball dist U : B × * 𝒫 B ran ball dist U 𝒫 B
105 15 103 104 3syl φ ran ball dist U 𝒫 B
106 105 sseld φ x ran ball dist U x 𝒫 B
107 elpwi x 𝒫 B x B
108 106 107 syl6 φ x ran ball dist U x B
109 108 pm4.71rd φ x ran ball dist U x B x ran ball dist U
110 98 102 109 3bitr4d φ x ran ball dist R V × V qTop F x ran ball dist U
111 110 eqrdv φ ran ball dist R V × V qTop F = ran ball dist U
112 111 fveq2d φ topGen ran ball dist R V × V qTop F = topGen ran ball dist U
113 47 53 112 3eqtr4d φ MetOpen dist U Base U × Base U = topGen ran ball dist R V × V qTop F
114 40 44 113 3eqtr4d φ MetOpen dist R V × V qTop F = MetOpen dist U Base U × Base U
115 26 31 114 3eqtrd φ TopOpen U = MetOpen dist U Base U × Base U
116 eqid Base U = Base U
117 eqid dist U Base U × Base U = dist U Base U × Base U
118 25 116 117 isxms2 U ∞MetSp dist U Base U × Base U ∞Met Base U TopOpen U = MetOpen dist U Base U × Base U
119 23 115 118 sylanbrc φ U ∞MetSp