Metamath Proof Explorer


Theorem imasghm

Description: Given a function F with homomorphic properties, build the image of a group. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses imasmhm.b B = Base W
imasmhm.f φ F : B C
imasmhm.1 + ˙ = + W
imasmhm.2 φ a B b B p B q B F a = F p F b = F q F a + ˙ b = F p + ˙ q
imasghm.w φ W Grp
Assertion imasghm φ F 𝑠 W Grp F W GrpHom F 𝑠 W

Proof

Step Hyp Ref Expression
1 imasmhm.b B = Base W
2 imasmhm.f φ F : B C
3 imasmhm.1 + ˙ = + W
4 imasmhm.2 φ a B b B p B q B F a = F p F b = F q F a + ˙ b = F p + ˙ q
5 imasghm.w φ W Grp
6 eqidd φ F 𝑠 W = F 𝑠 W
7 1 a1i φ B = Base W
8 3 a1i φ + ˙ = + W
9 fimadmfo F : B C F : B onto F B
10 2 9 syl φ F : B onto F B
11 eqid 0 W = 0 W
12 6 7 8 10 4 5 11 imasgrp φ F 𝑠 W Grp F 0 W = 0 F 𝑠 W
13 12 simpld φ F 𝑠 W Grp
14 eqid Base F 𝑠 W = Base F 𝑠 W
15 eqid + F 𝑠 W = + F 𝑠 W
16 fof F : B onto F B F : B F B
17 10 16 syl φ F : B F B
18 6 7 10 5 imasbas φ F B = Base F 𝑠 W
19 18 feq3d φ F : B F B F : B Base F 𝑠 W
20 17 19 mpbid φ F : B Base F 𝑠 W
21 10 4 6 7 5 3 15 imasaddval φ x B y B F x + F 𝑠 W F y = F x + ˙ y
22 21 3expb φ x B y B F x + F 𝑠 W F y = F x + ˙ y
23 22 eqcomd φ x B y B F x + ˙ y = F x + F 𝑠 W F y
24 1 14 3 15 5 13 20 23 isghmd φ F W GrpHom F 𝑠 W
25 13 24 jca φ F 𝑠 W Grp F W GrpHom F 𝑠 W