Step |
Hyp |
Ref |
Expression |
1 |
|
imasgrp.u |
|
2 |
|
imasgrp.v |
|
3 |
|
imasgrp.p |
|
4 |
|
imasgrp.f |
|
5 |
|
imasgrp.e |
|
6 |
|
imasgrp.r |
|
7 |
|
imasgrp.z |
|
8 |
6
|
3ad2ant1 |
|
9 |
|
simp2 |
|
10 |
2
|
3ad2ant1 |
|
11 |
9 10
|
eleqtrd |
|
12 |
|
simp3 |
|
13 |
12 10
|
eleqtrd |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
14 15
|
grpcl |
|
17 |
8 11 13 16
|
syl3anc |
|
18 |
3
|
3ad2ant1 |
|
19 |
18
|
oveqd |
|
20 |
17 19 10
|
3eltr4d |
|
21 |
6
|
adantr |
|
22 |
11
|
3adant3r3 |
|
23 |
13
|
3adant3r3 |
|
24 |
|
simpr3 |
|
25 |
2
|
adantr |
|
26 |
24 25
|
eleqtrd |
|
27 |
14 15
|
grpass |
|
28 |
21 22 23 26 27
|
syl13anc |
|
29 |
3
|
adantr |
|
30 |
19
|
3adant3r3 |
|
31 |
|
eqidd |
|
32 |
29 30 31
|
oveq123d |
|
33 |
|
eqidd |
|
34 |
29
|
oveqd |
|
35 |
29 33 34
|
oveq123d |
|
36 |
28 32 35
|
3eqtr4d |
|
37 |
36
|
fveq2d |
|
38 |
14 7
|
grpidcl |
|
39 |
6 38
|
syl |
|
40 |
39 2
|
eleqtrrd |
|
41 |
3
|
adantr |
|
42 |
41
|
oveqd |
|
43 |
2
|
eleq2d |
|
44 |
43
|
biimpa |
|
45 |
14 15 7
|
grplid |
|
46 |
6 44 45
|
syl2an2r |
|
47 |
42 46
|
eqtrd |
|
48 |
47
|
fveq2d |
|
49 |
|
eqid |
|
50 |
14 49
|
grpinvcl |
|
51 |
6 44 50
|
syl2an2r |
|
52 |
2
|
adantr |
|
53 |
51 52
|
eleqtrrd |
|
54 |
41
|
oveqd |
|
55 |
14 15 7 49
|
grplinv |
|
56 |
6 44 55
|
syl2an2r |
|
57 |
54 56
|
eqtrd |
|
58 |
57
|
fveq2d |
|
59 |
1 2 3 4 5 6 20 37 40 48 53 58
|
imasgrp2 |
|