Metamath Proof Explorer


Theorem imasgrpf1

Description: The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses imasgrpf1.u U = F 𝑠 R
imasgrpf1.v V = Base R
Assertion imasgrpf1 F : V 1-1 B R Grp U Grp

Proof

Step Hyp Ref Expression
1 imasgrpf1.u U = F 𝑠 R
2 imasgrpf1.v V = Base R
3 1 a1i F : V 1-1 B R Grp U = F 𝑠 R
4 2 a1i F : V 1-1 B R Grp V = Base R
5 eqidd F : V 1-1 B R Grp + R = + R
6 f1f1orn F : V 1-1 B F : V 1-1 onto ran F
7 6 adantr F : V 1-1 B R Grp F : V 1-1 onto ran F
8 f1ofo F : V 1-1 onto ran F F : V onto ran F
9 7 8 syl F : V 1-1 B R Grp F : V onto ran F
10 7 f1ocpbl F : V 1-1 B R Grp a V b V p V q V F a = F p F b = F q F a + R b = F p + R q
11 simpr F : V 1-1 B R Grp R Grp
12 eqid 0 R = 0 R
13 3 4 5 9 10 11 12 imasgrp F : V 1-1 B R Grp U Grp F 0 R = 0 U
14 13 simpld F : V 1-1 B R Grp U Grp