Metamath Proof Explorer


Theorem imasip

Description: The inner product of an image structure. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses imasbas.u φ U = F 𝑠 R
imasbas.v φ V = Base R
imasbas.f φ F : V onto B
imasbas.r φ R Z
imasip.i , ˙ = 𝑖 R
imasip.w I = 𝑖 U
Assertion imasip φ I = p V q V F p F q p , ˙ q

Proof

Step Hyp Ref Expression
1 imasbas.u φ U = F 𝑠 R
2 imasbas.v φ V = Base R
3 imasbas.f φ F : V onto B
4 imasbas.r φ R Z
5 imasip.i , ˙ = 𝑖 R
6 imasip.w I = 𝑖 U
7 eqid + R = + R
8 eqid R = R
9 eqid Scalar R = Scalar R
10 eqid Base Scalar R = Base Scalar R
11 eqid R = R
12 eqid TopOpen R = TopOpen R
13 eqid dist R = dist R
14 eqid R = R
15 eqid + U = + U
16 1 2 3 4 7 15 imasplusg φ + U = p V q V F p F q F p + R q
17 eqid U = U
18 1 2 3 4 8 17 imasmulr φ U = p V q V F p F q F p R q
19 eqid U = U
20 1 2 3 4 9 10 11 19 imasvsca φ U = q V p Base Scalar R , x F q F p R q
21 eqidd φ p V q V F p F q p , ˙ q = p V q V F p F q p , ˙ q
22 eqidd φ TopOpen R qTop F = TopOpen R qTop F
23 eqid dist U = dist U
24 1 2 3 4 13 23 imasds φ dist U = x B , y B sup u ran z w V × V 1 u | F 1 st w 1 = x F 2 nd w u = y v 1 u 1 F 2 nd w v = F 1 st w v + 1 𝑠 * dist R z * <
25 eqidd φ F R F -1 = F R F -1
26 1 2 7 8 9 10 11 5 12 13 14 16 18 20 21 22 24 25 3 4 imasval φ U = Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p , ˙ q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
27 eqid Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p , ˙ q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U = Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p , ˙ q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
28 27 imasvalstr Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p , ˙ q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U Struct 1 12
29 ipid 𝑖 = Slot 𝑖 ndx
30 snsstp3 𝑖 ndx p V q V F p F q p , ˙ q Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p , ˙ q
31 ssun2 Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p , ˙ q Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p , ˙ q
32 30 31 sstri 𝑖 ndx p V q V F p F q p , ˙ q Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p , ˙ q
33 ssun1 Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p , ˙ q Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p , ˙ q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
34 32 33 sstri 𝑖 ndx p V q V F p F q p , ˙ q Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p , ˙ q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
35 fvex Base R V
36 2 35 eqeltrdi φ V V
37 snex F p F q p , ˙ q V
38 37 rgenw q V F p F q p , ˙ q V
39 iunexg V V q V F p F q p , ˙ q V q V F p F q p , ˙ q V
40 36 38 39 sylancl φ q V F p F q p , ˙ q V
41 40 ralrimivw φ p V q V F p F q p , ˙ q V
42 iunexg V V p V q V F p F q p , ˙ q V p V q V F p F q p , ˙ q V
43 36 41 42 syl2anc φ p V q V F p F q p , ˙ q V
44 26 28 29 34 43 6 strfv3 φ I = p V q V F p F q p , ˙ q