Metamath Proof Explorer


Theorem imasless

Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasless.u φ U = F 𝑠 R
imasless.v φ V = Base R
imasless.f φ F : V onto B
imasless.r φ R Z
imasless.l ˙ = U
Assertion imasless φ ˙ B × B

Proof

Step Hyp Ref Expression
1 imasless.u φ U = F 𝑠 R
2 imasless.v φ V = Base R
3 imasless.f φ F : V onto B
4 imasless.r φ R Z
5 imasless.l ˙ = U
6 eqid R = R
7 1 2 3 4 6 5 imasle φ ˙ = F R F -1
8 relco Rel F R F -1
9 relssdmrn Rel F R F -1 F R F -1 dom F R F -1 × ran F R F -1
10 8 9 ax-mp F R F -1 dom F R F -1 × ran F R F -1
11 dmco dom F R F -1 = F -1 -1 dom F R
12 fof F : V onto B F : V B
13 frel F : V B Rel F
14 3 12 13 3syl φ Rel F
15 dfrel2 Rel F F -1 -1 = F
16 14 15 sylib φ F -1 -1 = F
17 16 imaeq1d φ F -1 -1 dom F R = F dom F R
18 imassrn F dom F R ran F
19 forn F : V onto B ran F = B
20 3 19 syl φ ran F = B
21 18 20 sseqtrid φ F dom F R B
22 17 21 eqsstrd φ F -1 -1 dom F R B
23 11 22 eqsstrid φ dom F R F -1 B
24 rncoss ran F R F -1 ran F R
25 rnco2 ran F R = F ran R
26 imassrn F ran R ran F
27 26 20 sseqtrid φ F ran R B
28 25 27 eqsstrid φ ran F R B
29 24 28 sstrid φ ran F R F -1 B
30 xpss12 dom F R F -1 B ran F R F -1 B dom F R F -1 × ran F R F -1 B × B
31 23 29 30 syl2anc φ dom F R F -1 × ran F R F -1 B × B
32 10 31 sstrid φ F R F -1 B × B
33 7 32 eqsstrd φ ˙ B × B