Metamath Proof Explorer


Theorem imaslmhm

Description: Given a function F with homomorphic properties, build the image of a left module. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses imasmhm.b B = Base W
imasmhm.f φ F : B C
imasmhm.1 + ˙ = + W
imasmhm.2 φ a B b B p B q B F a = F p F b = F q F a + ˙ b = F p + ˙ q
imaslmhm.1 D = Scalar W
imaslmhm.2 K = Base D
imaslmhm.3 φ k K a B b B F a = F b F k × ˙ a = F k × ˙ b
imaslmhm.w φ W LMod
imaslmhm.4 × ˙ = W
Assertion imaslmhm φ F 𝑠 W LMod F W LMHom F 𝑠 W

Proof

Step Hyp Ref Expression
1 imasmhm.b B = Base W
2 imasmhm.f φ F : B C
3 imasmhm.1 + ˙ = + W
4 imasmhm.2 φ a B b B p B q B F a = F p F b = F q F a + ˙ b = F p + ˙ q
5 imaslmhm.1 D = Scalar W
6 imaslmhm.2 K = Base D
7 imaslmhm.3 φ k K a B b B F a = F b F k × ˙ a = F k × ˙ b
8 imaslmhm.w φ W LMod
9 imaslmhm.4 × ˙ = W
10 eqidd φ F 𝑠 W = F 𝑠 W
11 5 fveq2i Base D = Base Scalar W
12 6 11 eqtri K = Base Scalar W
13 eqid 0 W = 0 W
14 fimadmfo F : B C F : B onto F B
15 2 14 syl φ F : B onto F B
16 10 1 12 3 9 13 15 4 7 8 imaslmod φ F 𝑠 W LMod
17 eqid F 𝑠 W = F 𝑠 W
18 eqid Scalar F 𝑠 W = Scalar F 𝑠 W
19 1 a1i φ B = Base W
20 10 19 15 8 5 imassca φ D = Scalar F 𝑠 W
21 20 eqcomd φ Scalar F 𝑠 W = D
22 8 lmodgrpd φ W Grp
23 1 2 3 4 22 imasghm φ F 𝑠 W Grp F W GrpHom F 𝑠 W
24 23 simprd φ F W GrpHom F 𝑠 W
25 10 19 15 8 5 6 9 17 7 imasvscaval φ u K x B u F 𝑠 W F x = F u × ˙ x
26 25 3expb φ u K x B u F 𝑠 W F x = F u × ˙ x
27 26 eqcomd φ u K x B F u × ˙ x = u F 𝑠 W F x
28 1 9 17 5 18 6 8 16 21 24 27 islmhmd φ F W LMHom F 𝑠 W
29 16 28 jca φ F 𝑠 W LMod F W LMHom F 𝑠 W