Metamath Proof Explorer


Theorem imasmhm

Description: Given a function F with homomorphic properties, build the image of a monoid. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses imasmhm.b B = Base W
imasmhm.f φ F : B C
imasmhm.1 + ˙ = + W
imasmhm.2 φ a B b B p B q B F a = F p F b = F q F a + ˙ b = F p + ˙ q
imasmhm.w φ W Mnd
Assertion imasmhm φ F 𝑠 W Mnd F W MndHom F 𝑠 W

Proof

Step Hyp Ref Expression
1 imasmhm.b B = Base W
2 imasmhm.f φ F : B C
3 imasmhm.1 + ˙ = + W
4 imasmhm.2 φ a B b B p B q B F a = F p F b = F q F a + ˙ b = F p + ˙ q
5 imasmhm.w φ W Mnd
6 eqidd φ F 𝑠 W = F 𝑠 W
7 1 a1i φ B = Base W
8 fimadmfo F : B C F : B onto F B
9 2 8 syl φ F : B onto F B
10 eqid 0 W = 0 W
11 6 7 3 9 4 5 10 imasmnd φ F 𝑠 W Mnd F 0 W = 0 F 𝑠 W
12 11 simpld φ F 𝑠 W Mnd
13 eqid Base F 𝑠 W = Base F 𝑠 W
14 eqid + F 𝑠 W = + F 𝑠 W
15 eqid 0 F 𝑠 W = 0 F 𝑠 W
16 fof F : B onto F B F : B F B
17 9 16 syl φ F : B F B
18 6 7 9 5 imasbas φ F B = Base F 𝑠 W
19 18 feq3d φ F : B F B F : B Base F 𝑠 W
20 17 19 mpbid φ F : B Base F 𝑠 W
21 9 4 6 7 5 3 14 imasaddval φ x B y B F x + F 𝑠 W F y = F x + ˙ y
22 21 3expb φ x B y B F x + F 𝑠 W F y = F x + ˙ y
23 22 eqcomd φ x B y B F x + ˙ y = F x + F 𝑠 W F y
24 11 simprd φ F 0 W = 0 F 𝑠 W
25 1 13 3 14 10 15 5 12 20 23 24 ismhmd φ F W MndHom F 𝑠 W
26 12 25 jca φ F 𝑠 W Mnd F W MndHom F 𝑠 W