Metamath Proof Explorer


Theorem imasmulr

Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses imasbas.u φ U = F 𝑠 R
imasbas.v φ V = Base R
imasbas.f φ F : V onto B
imasbas.r φ R Z
imasmulr.p · ˙ = R
imasmulr.t ˙ = U
Assertion imasmulr φ ˙ = p V q V F p F q F p · ˙ q

Proof

Step Hyp Ref Expression
1 imasbas.u φ U = F 𝑠 R
2 imasbas.v φ V = Base R
3 imasbas.f φ F : V onto B
4 imasbas.r φ R Z
5 imasmulr.p · ˙ = R
6 imasmulr.t ˙ = U
7 eqid + R = + R
8 eqid Scalar R = Scalar R
9 eqid Base Scalar R = Base Scalar R
10 eqid R = R
11 eqid 𝑖 R = 𝑖 R
12 eqid TopOpen R = TopOpen R
13 eqid dist R = dist R
14 eqid R = R
15 eqid + U = + U
16 1 2 3 4 7 15 imasplusg φ + U = p V q V F p F q F p + R q
17 eqidd φ p V q V F p F q F p · ˙ q = p V q V F p F q F p · ˙ q
18 eqidd φ q V p Base Scalar R , x F q F p R q = q V p Base Scalar R , x F q F p R q
19 eqidd φ p V q V F p F q p 𝑖 R q = p V q V F p F q p 𝑖 R q
20 eqidd φ TopOpen R qTop F = TopOpen R qTop F
21 eqid dist U = dist U
22 1 2 3 4 13 21 imasds φ dist U = x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * dist R g * <
23 eqidd φ F R F -1 = F R F -1
24 1 2 7 5 8 9 10 11 12 13 14 16 17 18 19 20 22 23 3 4 imasval φ U = Base ndx B + ndx + U ndx p V q V F p F q F p · ˙ q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
25 eqid Base ndx B + ndx + U ndx p V q V F p F q F p · ˙ q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U = Base ndx B + ndx + U ndx p V q V F p F q F p · ˙ q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
26 25 imasvalstr Base ndx B + ndx + U ndx p V q V F p F q F p · ˙ q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U Struct 1 12
27 mulrid 𝑟 = Slot ndx
28 snsstp3 ndx p V q V F p F q F p · ˙ q Base ndx B + ndx + U ndx p V q V F p F q F p · ˙ q
29 ssun1 Base ndx B + ndx + U ndx p V q V F p F q F p · ˙ q Base ndx B + ndx + U ndx p V q V F p F q F p · ˙ q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q
30 28 29 sstri ndx p V q V F p F q F p · ˙ q Base ndx B + ndx + U ndx p V q V F p F q F p · ˙ q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q
31 ssun1 Base ndx B + ndx + U ndx p V q V F p F q F p · ˙ q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q Base ndx B + ndx + U ndx p V q V F p F q F p · ˙ q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
32 30 31 sstri ndx p V q V F p F q F p · ˙ q Base ndx B + ndx + U ndx p V q V F p F q F p · ˙ q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
33 fvex Base R V
34 2 33 eqeltrdi φ V V
35 snex F p F q F p · ˙ q V
36 35 rgenw q V F p F q F p · ˙ q V
37 iunexg V V q V F p F q F p · ˙ q V q V F p F q F p · ˙ q V
38 34 36 37 sylancl φ q V F p F q F p · ˙ q V
39 38 ralrimivw φ p V q V F p F q F p · ˙ q V
40 iunexg V V p V q V F p F q F p · ˙ q V p V q V F p F q F p · ˙ q V
41 34 39 40 syl2anc φ p V q V F p F q F p · ˙ q V
42 24 26 27 32 41 6 strfv3 φ ˙ = p V q V F p F q F p · ˙ q