Metamath Proof Explorer


Theorem imasng

Description: The image of a singleton. (Contributed by NM, 8-May-2005)

Ref Expression
Assertion imasng A B R A = y | A R y

Proof

Step Hyp Ref Expression
1 elex A B A V
2 dfima2 R A = y | x A x R y
3 breq1 x = A x R y A R y
4 3 rexsng A V x A x R y A R y
5 4 abbidv A V y | x A x R y = y | A R y
6 2 5 eqtrid A V R A = y | A R y
7 1 6 syl A B R A = y | A R y