Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
imasng
Next ⟩
relimasn
Metamath Proof Explorer
Ascii
Unicode
Theorem
imasng
Description:
The image of a singleton.
(Contributed by
NM
, 8-May-2005)
Ref
Expression
Assertion
imasng
⊢
A
∈
B
→
R
A
=
y
|
A
R
y
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
A
∈
B
→
A
∈
V
2
dfima2
⊢
R
A
=
y
|
∃
x
∈
A
x
R
y
3
breq1
⊢
x
=
A
→
x
R
y
↔
A
R
y
4
3
rexsng
⊢
A
∈
V
→
∃
x
∈
A
x
R
y
↔
A
R
y
5
4
abbidv
⊢
A
∈
V
→
y
|
∃
x
∈
A
x
R
y
=
y
|
A
R
y
6
2
5
eqtrid
⊢
A
∈
V
→
R
A
=
y
|
A
R
y
7
1
6
syl
⊢
A
∈
B
→
R
A
=
y
|
A
R
y