Step |
Hyp |
Ref |
Expression |
1 |
|
imasnopn.1 |
|
2 |
|
nfv |
|
3 |
|
nfcv |
|
4 |
|
nfrab1 |
|
5 |
|
txtop |
|
6 |
5
|
adantr |
|
7 |
|
simprl |
|
8 |
|
eqid |
|
9 |
8
|
eltopss |
|
10 |
6 7 9
|
syl2anc |
|
11 |
|
eqid |
|
12 |
1 11
|
txuni |
|
13 |
12
|
adantr |
|
14 |
10 13
|
sseqtrrd |
|
15 |
|
imass1 |
|
16 |
14 15
|
syl |
|
17 |
|
xpimasn |
|
18 |
17
|
ad2antll |
|
19 |
16 18
|
sseqtrd |
|
20 |
19
|
sseld |
|
21 |
20
|
pm4.71rd |
|
22 |
|
elimasng |
|
23 |
22
|
elvd |
|
24 |
23
|
ad2antll |
|
25 |
24
|
anbi2d |
|
26 |
21 25
|
bitrd |
|
27 |
|
rabid |
|
28 |
26 27
|
bitr4di |
|
29 |
2 3 4 28
|
eqrd |
|
30 |
|
eqid |
|
31 |
30
|
mptpreima |
|
32 |
29 31
|
eqtr4di |
|
33 |
11
|
toptopon |
|
34 |
33
|
biimpi |
|
35 |
34
|
ad2antlr |
|
36 |
1
|
toptopon |
|
37 |
36
|
biimpi |
|
38 |
37
|
ad2antrr |
|
39 |
|
simprr |
|
40 |
35 38 39
|
cnmptc |
|
41 |
35
|
cnmptid |
|
42 |
35 40 41
|
cnmpt1t |
|
43 |
|
cnima |
|
44 |
42 7 43
|
syl2anc |
|
45 |
32 44
|
eqeltrd |
|