Step |
Hyp |
Ref |
Expression |
1 |
|
imasring.u |
|
2 |
|
imasring.v |
|
3 |
|
imasring.p |
|
4 |
|
imasring.t |
|
5 |
|
imasring.o |
|
6 |
|
imasring.f |
|
7 |
|
imasring.e1 |
|
8 |
|
imasring.e2 |
|
9 |
|
imasring.r |
|
10 |
1 2 6 9
|
imasbas |
|
11 |
|
eqidd |
|
12 |
|
eqidd |
|
13 |
3
|
a1i |
|
14 |
|
ringgrp |
|
15 |
9 14
|
syl |
|
16 |
|
eqid |
|
17 |
1 2 13 6 7 15 16
|
imasgrp |
|
18 |
17
|
simpld |
|
19 |
|
eqid |
|
20 |
9
|
adantr |
|
21 |
|
simprl |
|
22 |
2
|
adantr |
|
23 |
21 22
|
eleqtrd |
|
24 |
|
simprr |
|
25 |
24 22
|
eleqtrd |
|
26 |
|
eqid |
|
27 |
26 4
|
ringcl |
|
28 |
20 23 25 27
|
syl3anc |
|
29 |
28 22
|
eleqtrrd |
|
30 |
29
|
caovclg |
|
31 |
6 8 1 2 9 4 19 30
|
imasmulf |
|
32 |
|
fovrn |
|
33 |
31 32
|
syl3an1 |
|
34 |
|
forn |
|
35 |
6 34
|
syl |
|
36 |
35
|
eleq2d |
|
37 |
35
|
eleq2d |
|
38 |
35
|
eleq2d |
|
39 |
36 37 38
|
3anbi123d |
|
40 |
|
fofn |
|
41 |
6 40
|
syl |
|
42 |
|
fvelrnb |
|
43 |
|
fvelrnb |
|
44 |
|
fvelrnb |
|
45 |
42 43 44
|
3anbi123d |
|
46 |
41 45
|
syl |
|
47 |
39 46
|
bitr3d |
|
48 |
|
3reeanv |
|
49 |
47 48
|
bitr4di |
|
50 |
9
|
adantr |
|
51 |
|
simp2 |
|
52 |
2
|
3ad2ant1 |
|
53 |
51 52
|
eleqtrd |
|
54 |
53
|
3adant3r3 |
|
55 |
|
simp3 |
|
56 |
55 52
|
eleqtrd |
|
57 |
56
|
3adant3r3 |
|
58 |
|
simpr3 |
|
59 |
2
|
adantr |
|
60 |
58 59
|
eleqtrd |
|
61 |
26 4
|
ringass |
|
62 |
50 54 57 60 61
|
syl13anc |
|
63 |
62
|
fveq2d |
|
64 |
|
simpl |
|
65 |
29
|
caovclg |
|
66 |
65
|
3adantr3 |
|
67 |
6 8 1 2 9 4 19
|
imasmulval |
|
68 |
64 66 58 67
|
syl3anc |
|
69 |
|
simpr1 |
|
70 |
29
|
caovclg |
|
71 |
70
|
3adantr1 |
|
72 |
6 8 1 2 9 4 19
|
imasmulval |
|
73 |
64 69 71 72
|
syl3anc |
|
74 |
63 68 73
|
3eqtr4d |
|
75 |
6 8 1 2 9 4 19
|
imasmulval |
|
76 |
75
|
3adant3r3 |
|
77 |
76
|
oveq1d |
|
78 |
6 8 1 2 9 4 19
|
imasmulval |
|
79 |
78
|
3adant3r1 |
|
80 |
79
|
oveq2d |
|
81 |
74 77 80
|
3eqtr4d |
|
82 |
|
simp1 |
|
83 |
|
simp2 |
|
84 |
82 83
|
oveq12d |
|
85 |
|
simp3 |
|
86 |
84 85
|
oveq12d |
|
87 |
83 85
|
oveq12d |
|
88 |
82 87
|
oveq12d |
|
89 |
86 88
|
eqeq12d |
|
90 |
81 89
|
syl5ibcom |
|
91 |
90
|
3exp2 |
|
92 |
91
|
imp32 |
|
93 |
92
|
rexlimdv |
|
94 |
93
|
rexlimdvva |
|
95 |
49 94
|
sylbid |
|
96 |
95
|
imp |
|
97 |
26 3 4
|
ringdi |
|
98 |
50 54 57 60 97
|
syl13anc |
|
99 |
98
|
fveq2d |
|
100 |
26 3
|
ringacl |
|
101 |
20 23 25 100
|
syl3anc |
|
102 |
101 22
|
eleqtrrd |
|
103 |
102
|
caovclg |
|
104 |
103
|
3adantr1 |
|
105 |
6 8 1 2 9 4 19
|
imasmulval |
|
106 |
64 69 104 105
|
syl3anc |
|
107 |
29
|
caovclg |
|
108 |
107
|
3adantr2 |
|
109 |
|
eqid |
|
110 |
6 7 1 2 9 3 109
|
imasaddval |
|
111 |
64 66 108 110
|
syl3anc |
|
112 |
99 106 111
|
3eqtr4d |
|
113 |
6 7 1 2 9 3 109
|
imasaddval |
|
114 |
113
|
3adant3r1 |
|
115 |
114
|
oveq2d |
|
116 |
6 8 1 2 9 4 19
|
imasmulval |
|
117 |
116
|
3adant3r2 |
|
118 |
76 117
|
oveq12d |
|
119 |
112 115 118
|
3eqtr4d |
|
120 |
83 85
|
oveq12d |
|
121 |
82 120
|
oveq12d |
|
122 |
82 85
|
oveq12d |
|
123 |
84 122
|
oveq12d |
|
124 |
121 123
|
eqeq12d |
|
125 |
119 124
|
syl5ibcom |
|
126 |
125
|
3exp2 |
|
127 |
126
|
imp32 |
|
128 |
127
|
rexlimdv |
|
129 |
128
|
rexlimdvva |
|
130 |
49 129
|
sylbid |
|
131 |
130
|
imp |
|
132 |
26 3 4
|
ringdir |
|
133 |
50 54 57 60 132
|
syl13anc |
|
134 |
133
|
fveq2d |
|
135 |
102
|
caovclg |
|
136 |
135
|
3adantr3 |
|
137 |
6 8 1 2 9 4 19
|
imasmulval |
|
138 |
64 136 58 137
|
syl3anc |
|
139 |
6 7 1 2 9 3 109
|
imasaddval |
|
140 |
64 108 71 139
|
syl3anc |
|
141 |
134 138 140
|
3eqtr4d |
|
142 |
6 7 1 2 9 3 109
|
imasaddval |
|
143 |
142
|
3adant3r3 |
|
144 |
143
|
oveq1d |
|
145 |
117 79
|
oveq12d |
|
146 |
141 144 145
|
3eqtr4d |
|
147 |
82 83
|
oveq12d |
|
148 |
147 85
|
oveq12d |
|
149 |
122 87
|
oveq12d |
|
150 |
148 149
|
eqeq12d |
|
151 |
146 150
|
syl5ibcom |
|
152 |
151
|
3exp2 |
|
153 |
152
|
imp32 |
|
154 |
153
|
rexlimdv |
|
155 |
154
|
rexlimdvva |
|
156 |
49 155
|
sylbid |
|
157 |
156
|
imp |
|
158 |
|
fof |
|
159 |
6 158
|
syl |
|
160 |
26 5
|
ringidcl |
|
161 |
9 160
|
syl |
|
162 |
161 2
|
eleqtrrd |
|
163 |
159 162
|
ffvelrnd |
|
164 |
41 42
|
syl |
|
165 |
36 164
|
bitr3d |
|
166 |
|
simpl |
|
167 |
162
|
adantr |
|
168 |
|
simpr |
|
169 |
6 8 1 2 9 4 19
|
imasmulval |
|
170 |
166 167 168 169
|
syl3anc |
|
171 |
2
|
eleq2d |
|
172 |
171
|
biimpa |
|
173 |
26 4 5
|
ringlidm |
|
174 |
9 172 173
|
syl2an2r |
|
175 |
174
|
fveq2d |
|
176 |
170 175
|
eqtrd |
|
177 |
|
oveq2 |
|
178 |
|
id |
|
179 |
177 178
|
eqeq12d |
|
180 |
176 179
|
syl5ibcom |
|
181 |
180
|
rexlimdva |
|
182 |
165 181
|
sylbid |
|
183 |
182
|
imp |
|
184 |
6 8 1 2 9 4 19
|
imasmulval |
|
185 |
167 184
|
mpd3an3 |
|
186 |
26 4 5
|
ringridm |
|
187 |
9 172 186
|
syl2an2r |
|
188 |
187
|
fveq2d |
|
189 |
185 188
|
eqtrd |
|
190 |
|
oveq1 |
|
191 |
190 178
|
eqeq12d |
|
192 |
189 191
|
syl5ibcom |
|
193 |
192
|
rexlimdva |
|
194 |
165 193
|
sylbid |
|
195 |
194
|
imp |
|
196 |
10 11 12 18 33 96 131 157 163 183 195
|
isringd |
|
197 |
163 10
|
eleqtrd |
|
198 |
10
|
eleq2d |
|
199 |
182 194
|
jcad |
|
200 |
198 199
|
sylbird |
|
201 |
200
|
ralrimiv |
|
202 |
|
eqid |
|
203 |
|
eqid |
|
204 |
202 19 203
|
isringid |
|
205 |
196 204
|
syl |
|
206 |
197 201 205
|
mpbi2and |
|
207 |
206
|
eqcomd |
|
208 |
196 207
|
jca |
|