Metamath Proof Explorer


Theorem imasringf1

Description: The image of a ring under an injection is a ring ( imasmndf1 analog). (Contributed by AV, 27-Feb-2025)

Ref Expression
Hypotheses imasringf1.u U = F 𝑠 R
imasringf1.v V = Base R
Assertion imasringf1 F : V 1-1 B R Ring U Ring

Proof

Step Hyp Ref Expression
1 imasringf1.u U = F 𝑠 R
2 imasringf1.v V = Base R
3 1 a1i F : V 1-1 B R Ring U = F 𝑠 R
4 2 a1i F : V 1-1 B R Ring V = Base R
5 eqid + R = + R
6 eqid R = R
7 eqid 1 R = 1 R
8 f1f1orn F : V 1-1 B F : V 1-1 onto ran F
9 8 adantr F : V 1-1 B R Ring F : V 1-1 onto ran F
10 f1ofo F : V 1-1 onto ran F F : V onto ran F
11 9 10 syl F : V 1-1 B R Ring F : V onto ran F
12 9 f1ocpbl F : V 1-1 B R Ring a V b V p V q V F a = F p F b = F q F a + R b = F p + R q
13 9 f1ocpbl F : V 1-1 B R Ring a V b V p V q V F a = F p F b = F q F a R b = F p R q
14 simpr F : V 1-1 B R Ring R Ring
15 3 4 5 6 7 11 12 13 14 imasring F : V 1-1 B R Ring U Ring F 1 R = 1 U
16 15 simpld F : V 1-1 B R Ring U Ring