Step |
Hyp |
Ref |
Expression |
1 |
|
imasrng.u |
|
2 |
|
imasrng.v |
|
3 |
|
imasrng.p |
|
4 |
|
imasrng.t |
|
5 |
|
imasrng.f |
|
6 |
|
imasrng.e1 |
|
7 |
|
imasrng.e2 |
|
8 |
|
imasrng.r |
|
9 |
1 2 5 8
|
imasbas |
|
10 |
|
eqidd |
|
11 |
|
eqidd |
|
12 |
3
|
a1i |
|
13 |
|
rngabl |
|
14 |
8 13
|
syl |
|
15 |
|
eqid |
|
16 |
1 2 12 5 6 14 15
|
imasabl |
|
17 |
16
|
simpld |
|
18 |
|
eqid |
|
19 |
8
|
adantr |
|
20 |
|
simprl |
|
21 |
2
|
adantr |
|
22 |
20 21
|
eleqtrd |
|
23 |
|
simprr |
|
24 |
23 21
|
eleqtrd |
|
25 |
|
eqid |
|
26 |
25 4
|
rngcl |
|
27 |
19 22 24 26
|
syl3anc |
|
28 |
27 21
|
eleqtrrd |
|
29 |
28
|
caovclg |
|
30 |
5 7 1 2 8 4 18 29
|
imasmulf |
|
31 |
30
|
fovcld |
|
32 |
|
forn |
|
33 |
5 32
|
syl |
|
34 |
33
|
eleq2d |
|
35 |
33
|
eleq2d |
|
36 |
33
|
eleq2d |
|
37 |
34 35 36
|
3anbi123d |
|
38 |
|
fofn |
|
39 |
|
fvelrnb |
|
40 |
|
fvelrnb |
|
41 |
|
fvelrnb |
|
42 |
39 40 41
|
3anbi123d |
|
43 |
5 38 42
|
3syl |
|
44 |
37 43
|
bitr3d |
|
45 |
|
3reeanv |
|
46 |
44 45
|
bitr4di |
|
47 |
8
|
adantr |
|
48 |
|
simp2 |
|
49 |
2
|
3ad2ant1 |
|
50 |
48 49
|
eleqtrd |
|
51 |
50
|
3adant3r3 |
|
52 |
|
simp3 |
|
53 |
52 49
|
eleqtrd |
|
54 |
53
|
3adant3r3 |
|
55 |
|
simpr3 |
|
56 |
2
|
adantr |
|
57 |
55 56
|
eleqtrd |
|
58 |
25 4
|
rngass |
|
59 |
47 51 54 57 58
|
syl13anc |
|
60 |
59
|
fveq2d |
|
61 |
|
simpl |
|
62 |
28
|
caovclg |
|
63 |
62
|
3adantr3 |
|
64 |
5 7 1 2 8 4 18
|
imasmulval |
|
65 |
61 63 55 64
|
syl3anc |
|
66 |
|
simpr1 |
|
67 |
28
|
caovclg |
|
68 |
67
|
3adantr1 |
|
69 |
5 7 1 2 8 4 18
|
imasmulval |
|
70 |
61 66 68 69
|
syl3anc |
|
71 |
60 65 70
|
3eqtr4d |
|
72 |
5 7 1 2 8 4 18
|
imasmulval |
|
73 |
72
|
3adant3r3 |
|
74 |
73
|
oveq1d |
|
75 |
5 7 1 2 8 4 18
|
imasmulval |
|
76 |
75
|
3adant3r1 |
|
77 |
76
|
oveq2d |
|
78 |
71 74 77
|
3eqtr4d |
|
79 |
|
simp1 |
|
80 |
|
simp2 |
|
81 |
79 80
|
oveq12d |
|
82 |
|
simp3 |
|
83 |
81 82
|
oveq12d |
|
84 |
80 82
|
oveq12d |
|
85 |
79 84
|
oveq12d |
|
86 |
83 85
|
eqeq12d |
|
87 |
78 86
|
syl5ibcom |
|
88 |
87
|
3exp2 |
|
89 |
88
|
imp32 |
|
90 |
89
|
rexlimdv |
|
91 |
90
|
rexlimdvva |
|
92 |
46 91
|
sylbid |
|
93 |
92
|
imp |
|
94 |
25 3 4
|
rngdi |
|
95 |
47 51 54 57 94
|
syl13anc |
|
96 |
95
|
fveq2d |
|
97 |
25 3
|
rngacl |
|
98 |
19 22 24 97
|
syl3anc |
|
99 |
98 21
|
eleqtrrd |
|
100 |
99
|
caovclg |
|
101 |
100
|
3adantr1 |
|
102 |
5 7 1 2 8 4 18
|
imasmulval |
|
103 |
61 66 101 102
|
syl3anc |
|
104 |
28
|
caovclg |
|
105 |
104
|
3adantr2 |
|
106 |
|
eqid |
|
107 |
5 6 1 2 8 3 106
|
imasaddval |
|
108 |
61 63 105 107
|
syl3anc |
|
109 |
96 103 108
|
3eqtr4d |
|
110 |
5 6 1 2 8 3 106
|
imasaddval |
|
111 |
110
|
3adant3r1 |
|
112 |
111
|
oveq2d |
|
113 |
5 7 1 2 8 4 18
|
imasmulval |
|
114 |
113
|
3adant3r2 |
|
115 |
73 114
|
oveq12d |
|
116 |
109 112 115
|
3eqtr4d |
|
117 |
80 82
|
oveq12d |
|
118 |
79 117
|
oveq12d |
|
119 |
79 82
|
oveq12d |
|
120 |
81 119
|
oveq12d |
|
121 |
118 120
|
eqeq12d |
|
122 |
116 121
|
syl5ibcom |
|
123 |
122
|
3exp2 |
|
124 |
123
|
imp32 |
|
125 |
124
|
rexlimdv |
|
126 |
125
|
rexlimdvva |
|
127 |
46 126
|
sylbid |
|
128 |
127
|
imp |
|
129 |
25 3 4
|
rngdir |
|
130 |
47 51 54 57 129
|
syl13anc |
|
131 |
130
|
fveq2d |
|
132 |
99
|
caovclg |
|
133 |
132
|
3adantr3 |
|
134 |
5 7 1 2 8 4 18
|
imasmulval |
|
135 |
61 133 55 134
|
syl3anc |
|
136 |
5 6 1 2 8 3 106
|
imasaddval |
|
137 |
61 105 68 136
|
syl3anc |
|
138 |
131 135 137
|
3eqtr4d |
|
139 |
5 6 1 2 8 3 106
|
imasaddval |
|
140 |
139
|
3adant3r3 |
|
141 |
140
|
oveq1d |
|
142 |
114 76
|
oveq12d |
|
143 |
138 141 142
|
3eqtr4d |
|
144 |
79 80
|
oveq12d |
|
145 |
144 82
|
oveq12d |
|
146 |
119 84
|
oveq12d |
|
147 |
145 146
|
eqeq12d |
|
148 |
143 147
|
syl5ibcom |
|
149 |
148
|
3exp2 |
|
150 |
149
|
imp32 |
|
151 |
150
|
rexlimdv |
|
152 |
151
|
rexlimdvva |
|
153 |
46 152
|
sylbid |
|
154 |
153
|
imp |
|
155 |
9 10 11 17 31 93 128 154
|
isrngd |
|