Metamath Proof Explorer


Theorem imasrngf1

Description: The image of a non-unital ring under an injection is a non-unital ring ( imasmndf1 analog). (Contributed by AV, 22-Feb-2025)

Ref Expression
Hypotheses imasrngf1.u U = F 𝑠 R
imasrngf1.v V = Base R
Assertion imasrngf1 F : V 1-1 B R Rng U Rng

Proof

Step Hyp Ref Expression
1 imasrngf1.u U = F 𝑠 R
2 imasrngf1.v V = Base R
3 1 a1i F : V 1-1 B R Rng U = F 𝑠 R
4 2 a1i F : V 1-1 B R Rng V = Base R
5 eqid + R = + R
6 eqid R = R
7 f1f1orn F : V 1-1 B F : V 1-1 onto ran F
8 7 adantr F : V 1-1 B R Rng F : V 1-1 onto ran F
9 f1ofo F : V 1-1 onto ran F F : V onto ran F
10 8 9 syl F : V 1-1 B R Rng F : V onto ran F
11 8 f1ocpbl F : V 1-1 B R Rng a V b V p V q V F a = F p F b = F q F a + R b = F p + R q
12 8 f1ocpbl F : V 1-1 B R Rng a V b V p V q V F a = F p F b = F q F a R b = F p R q
13 simpr F : V 1-1 B R Rng R Rng
14 3 4 5 6 10 11 12 13 imasrng F : V 1-1 B R Rng U Rng