Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
imass1
Next ⟩
imass2
Metamath Proof Explorer
Ascii
Unicode
Theorem
imass1
Description:
Subset theorem for image.
(Contributed by
NM
, 16-Mar-2004)
Ref
Expression
Assertion
imass1
⊢
A
⊆
B
→
A
C
⊆
B
C
Proof
Step
Hyp
Ref
Expression
1
ssres
⊢
A
⊆
B
→
A
↾
C
⊆
B
↾
C
2
rnss
⊢
A
↾
C
⊆
B
↾
C
→
ran
⁡
A
↾
C
⊆
ran
⁡
B
↾
C
3
1
2
syl
⊢
A
⊆
B
→
ran
⁡
A
↾
C
⊆
ran
⁡
B
↾
C
4
df-ima
⊢
A
C
=
ran
⁡
A
↾
C
5
df-ima
⊢
B
C
=
ran
⁡
B
↾
C
6
3
4
5
3sstr4g
⊢
A
⊆
B
→
A
C
⊆
B
C