Metamath Proof Explorer


Theorem imassca

Description: The scalar field of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses imasbas.u φ U = F 𝑠 R
imasbas.v φ V = Base R
imasbas.f φ F : V onto B
imasbas.r φ R Z
imassca.g G = Scalar R
Assertion imassca φ G = Scalar U

Proof

Step Hyp Ref Expression
1 imasbas.u φ U = F 𝑠 R
2 imasbas.v φ V = Base R
3 imasbas.f φ F : V onto B
4 imasbas.r φ R Z
5 imassca.g G = Scalar R
6 5 fvexi G V
7 eqid Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U = Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
8 7 imasvalstr Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U Struct 1 12
9 scaid Scalar = Slot Scalar ndx
10 snsstp1 Scalar ndx G Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q
11 ssun2 Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q
12 10 11 sstri Scalar ndx G Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q
13 ssun1 Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
14 12 13 sstri Scalar ndx G Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
15 8 9 14 strfv G V G = Scalar Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
16 6 15 ax-mp G = Scalar Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
17 eqid + R = + R
18 eqid R = R
19 eqid Base G = Base G
20 eqid R = R
21 eqid 𝑖 R = 𝑖 R
22 eqid TopOpen R = TopOpen R
23 eqid dist R = dist R
24 eqid R = R
25 eqid + U = + U
26 1 2 3 4 17 25 imasplusg φ + U = p V q V F p F q F p + R q
27 eqid U = U
28 1 2 3 4 18 27 imasmulr φ U = p V q V F p F q F p R q
29 eqidd φ q V p Base G , x F q F p R q = q V p Base G , x F q F p R q
30 eqidd φ p V q V F p F q p 𝑖 R q = p V q V F p F q p 𝑖 R q
31 eqidd φ TopOpen R qTop F = TopOpen R qTop F
32 eqid dist U = dist U
33 1 2 3 4 23 32 imasds φ dist U = x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * dist R g * <
34 eqidd φ F R F -1 = F R F -1
35 1 2 17 18 5 19 20 21 22 23 24 26 28 29 30 31 33 34 3 4 imasval φ U = Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
36 35 fveq2d φ Scalar U = Scalar Base ndx B + ndx + U ndx U Scalar ndx G ndx q V p Base G , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx dist U
37 16 36 eqtr4id φ G = Scalar U