Metamath Proof Explorer


Theorem imastopn

Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses imastps.u φ U = F 𝑠 R
imastps.v φ V = Base R
imastps.f φ F : V onto B
imastopn.r φ R W
imastopn.j J = TopOpen R
imastopn.o O = TopOpen U
Assertion imastopn φ O = J qTop F

Proof

Step Hyp Ref Expression
1 imastps.u φ U = F 𝑠 R
2 imastps.v φ V = Base R
3 imastps.f φ F : V onto B
4 imastopn.r φ R W
5 imastopn.j J = TopOpen R
6 imastopn.o O = TopOpen U
7 eqid TopSet U = TopSet U
8 1 2 3 4 5 7 imastset φ TopSet U = J qTop F
9 5 fvexi J V
10 fofn F : V onto B F Fn V
11 3 10 syl φ F Fn V
12 fvex Base R V
13 2 12 eqeltrdi φ V V
14 fnex F Fn V V V F V
15 11 13 14 syl2anc φ F V
16 eqid J = J
17 16 qtopval J V F V J qTop F = x 𝒫 F J | F -1 x J J
18 9 15 17 sylancr φ J qTop F = x 𝒫 F J | F -1 x J J
19 8 18 eqtrd φ TopSet U = x 𝒫 F J | F -1 x J J
20 ssrab2 x 𝒫 F J | F -1 x J J 𝒫 F J
21 imassrn F J ran F
22 forn F : V onto B ran F = B
23 3 22 syl φ ran F = B
24 1 2 3 4 imasbas φ B = Base U
25 23 24 eqtrd φ ran F = Base U
26 21 25 sseqtrid φ F J Base U
27 26 sspwd φ 𝒫 F J 𝒫 Base U
28 20 27 sstrid φ x 𝒫 F J | F -1 x J J 𝒫 Base U
29 19 28 eqsstrd φ TopSet U 𝒫 Base U
30 eqid Base U = Base U
31 30 7 topnid TopSet U 𝒫 Base U TopSet U = TopOpen U
32 29 31 syl φ TopSet U = TopOpen U
33 32 6 eqtr4di φ TopSet U = O
34 33 8 eqtr3d φ O = J qTop F