Metamath Proof Explorer


Theorem imastset

Description: The topology of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses imasbas.u φ U = F 𝑠 R
imasbas.v φ V = Base R
imasbas.f φ F : V onto B
imasbas.r φ R Z
imastset.j J = TopOpen R
imastset.o O = TopSet U
Assertion imastset φ O = J qTop F

Proof

Step Hyp Ref Expression
1 imasbas.u φ U = F 𝑠 R
2 imasbas.v φ V = Base R
3 imasbas.f φ F : V onto B
4 imasbas.r φ R Z
5 imastset.j J = TopOpen R
6 imastset.o O = TopSet U
7 eqid + R = + R
8 eqid R = R
9 eqid Scalar R = Scalar R
10 eqid Base Scalar R = Base Scalar R
11 eqid R = R
12 eqid 𝑖 R = 𝑖 R
13 eqid dist R = dist R
14 eqid R = R
15 eqid + U = + U
16 1 2 3 4 7 15 imasplusg φ + U = p V q V F p F q F p + R q
17 eqid U = U
18 1 2 3 4 8 17 imasmulr φ U = p V q V F p F q F p R q
19 eqid U = U
20 1 2 3 4 9 10 11 19 imasvsca φ U = q V p Base Scalar R , x F q F p R q
21 eqidd φ p V q V F p F q p 𝑖 R q = p V q V F p F q p 𝑖 R q
22 eqidd φ J qTop F = J qTop F
23 eqid dist U = dist U
24 1 2 3 4 13 23 imasds φ dist U = x B , y B sup u ran z w V × V 1 u | F 1 st w 1 = x F 2 nd w u = y v 1 u 1 F 2 nd w v = F 1 st w v + 1 𝑠 * dist R z * <
25 eqidd φ F R F -1 = F R F -1
26 1 2 7 8 9 10 11 12 5 13 14 16 18 20 21 22 24 25 3 4 imasval φ U = Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx J qTop F ndx F R F -1 dist ndx dist U
27 26 fveq2d φ TopSet U = TopSet Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx J qTop F ndx F R F -1 dist ndx dist U
28 ovex J qTop F V
29 eqid Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx J qTop F ndx F R F -1 dist ndx dist U = Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx J qTop F ndx F R F -1 dist ndx dist U
30 29 imasvalstr Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx J qTop F ndx F R F -1 dist ndx dist U Struct 1 12
31 tsetid TopSet = Slot TopSet ndx
32 snsstp1 TopSet ndx J qTop F TopSet ndx J qTop F ndx F R F -1 dist ndx dist U
33 ssun2 TopSet ndx J qTop F ndx F R F -1 dist ndx dist U Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx J qTop F ndx F R F -1 dist ndx dist U
34 32 33 sstri TopSet ndx J qTop F Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx J qTop F ndx F R F -1 dist ndx dist U
35 30 31 34 strfv J qTop F V J qTop F = TopSet Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx J qTop F ndx F R F -1 dist ndx dist U
36 28 35 ax-mp J qTop F = TopSet Base ndx B + ndx + U ndx U Scalar ndx Scalar R ndx U 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx J qTop F ndx F R F -1 dist ndx dist U
37 27 6 36 3eqtr4g φ O = J qTop F