Metamath Proof Explorer


Theorem imasvalstr

Description: An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis imasvalstr.u U = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D
Assertion imasvalstr U Struct 1 12

Proof

Step Hyp Ref Expression
1 imasvalstr.u U = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D
2 eqid Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙
3 2 ipsstr Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ Struct 1 8
4 9nn 9
5 tsetndx TopSet ndx = 9
6 9lt10 9 < 10
7 10nn 10
8 plendx ndx = 10
9 1nn0 1 0
10 0nn0 0 0
11 2nn 2
12 2pos 0 < 2
13 9 10 11 12 declt 10 < 12
14 9 11 decnncl 12
15 dsndx dist ndx = 12
16 4 5 6 7 8 13 14 15 strle3 TopSet ndx O ndx L dist ndx D Struct 9 12
17 8lt9 8 < 9
18 3 16 17 strleun Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙ 𝑖 ndx , ˙ TopSet ndx O ndx L dist ndx D Struct 1 12
19 1 18 eqbrtri U Struct 1 12