Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
imaundir
Next ⟩
cnvimassrndm
Metamath Proof Explorer
Ascii
Unicode
Theorem
imaundir
Description:
The image of a union.
(Contributed by
Jeff Hoffman
, 17-Feb-2008)
Ref
Expression
Assertion
imaundir
⊢
A
∪
B
C
=
A
C
∪
B
C
Proof
Step
Hyp
Ref
Expression
1
df-ima
⊢
A
∪
B
C
=
ran
⁡
A
∪
B
↾
C
2
resundir
⊢
A
∪
B
↾
C
=
A
↾
C
∪
B
↾
C
3
2
rneqi
⊢
ran
⁡
A
∪
B
↾
C
=
ran
⁡
A
↾
C
∪
B
↾
C
4
rnun
⊢
ran
⁡
A
↾
C
∪
B
↾
C
=
ran
⁡
A
↾
C
∪
ran
⁡
B
↾
C
5
1
3
4
3eqtri
⊢
A
∪
B
C
=
ran
⁡
A
↾
C
∪
ran
⁡
B
↾
C
6
df-ima
⊢
A
C
=
ran
⁡
A
↾
C
7
df-ima
⊢
B
C
=
ran
⁡
B
↾
C
8
6
7
uneq12i
⊢
A
C
∪
B
C
=
ran
⁡
A
↾
C
∪
ran
⁡
B
↾
C
9
5
8
eqtr4i
⊢
A
∪
B
C
=
A
C
∪
B
C