Metamath Proof Explorer


Theorem imbrov2fvoveq

Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022)

Ref Expression
Hypothesis imbrov2fvoveq.1 X = Y φ ψ
Assertion imbrov2fvoveq X = Y φ F G X · ˙ O R A ψ F G Y · ˙ O R A

Proof

Step Hyp Ref Expression
1 imbrov2fvoveq.1 X = Y φ ψ
2 fveq2 X = Y G X = G Y
3 2 fvoveq1d X = Y F G X · ˙ O = F G Y · ˙ O
4 3 breq1d X = Y F G X · ˙ O R A F G Y · ˙ O R A
5 1 4 imbi12d X = Y φ F G X · ˙ O R A ψ F G Y · ˙ O R A