Metamath Proof Explorer


Theorem imcj

Description: Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion imcj A A = A

Proof

Step Hyp Ref Expression
1 recl A A
2 1 recnd A A
3 ax-icn i
4 imcl A A
5 4 recnd A A
6 mulcl i A i A
7 3 5 6 sylancr A i A
8 2 7 negsubd A A + i A = A i A
9 mulneg2 i A i A = i A
10 3 5 9 sylancr A i A = i A
11 10 oveq2d A A + i A = A + i A
12 remim A A = A i A
13 8 11 12 3eqtr4rd A A = A + i A
14 13 fveq2d A A = A + i A
15 4 renegcld A A
16 crim A A A + i A = A
17 1 15 16 syl2anc A A + i A = A
18 14 17 eqtrd A A = A