Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Real and imaginary parts; conjugate
imcjd
Next ⟩
cjmulrcld
Metamath Proof Explorer
Ascii
Unicode
Theorem
imcjd
Description:
Imaginary part of a complex conjugate.
(Contributed by
Mario Carneiro
, 29-May-2016)
Ref
Expression
Hypothesis
recld.1
⊢
φ
→
A
∈
ℂ
Assertion
imcjd
⊢
φ
→
ℑ
⁡
A
‾
=
−
ℑ
⁡
A
Proof
Step
Hyp
Ref
Expression
1
recld.1
⊢
φ
→
A
∈
ℂ
2
imcj
⊢
A
∈
ℂ
→
ℑ
⁡
A
‾
=
−
ℑ
⁡
A
3
1
2
syl
⊢
φ
→
ℑ
⁡
A
‾
=
−
ℑ
⁡
A