Metamath Proof Explorer


Theorem imcl

Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion imcl A A

Proof

Step Hyp Ref Expression
1 imre A A = i A
2 negicn i
3 mulcl i A i A
4 2 3 mpan A i A
5 recl i A i A
6 4 5 syl A i A
7 1 6 eqeltrd A A