Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Limits
imcn2
Next ⟩
climcn1lem
Metamath Proof Explorer
Ascii
Unicode
Theorem
imcn2
Description:
The imaginary part function is continuous.
(Contributed by
Mario Carneiro
, 9-Feb-2014)
Ref
Expression
Assertion
imcn2
⊢
A
∈
ℂ
∧
x
∈
ℝ
+
→
∃
y
∈
ℝ
+
∀
z
∈
ℂ
z
−
A
<
y
→
ℑ
⁡
z
−
ℑ
⁡
A
<
x
Proof
Step
Hyp
Ref
Expression
1
imf
⊢
ℑ
:
ℂ
⟶
ℝ
2
ax-resscn
⊢
ℝ
⊆
ℂ
3
fss
⊢
ℑ
:
ℂ
⟶
ℝ
∧
ℝ
⊆
ℂ
→
ℑ
:
ℂ
⟶
ℂ
4
1
2
3
mp2an
⊢
ℑ
:
ℂ
⟶
ℂ
5
imsub
⊢
z
∈
ℂ
∧
A
∈
ℂ
→
ℑ
⁡
z
−
A
=
ℑ
⁡
z
−
ℑ
⁡
A
6
5
fveq2d
⊢
z
∈
ℂ
∧
A
∈
ℂ
→
ℑ
⁡
z
−
A
=
ℑ
⁡
z
−
ℑ
⁡
A
7
subcl
⊢
z
∈
ℂ
∧
A
∈
ℂ
→
z
−
A
∈
ℂ
8
absimle
⊢
z
−
A
∈
ℂ
→
ℑ
⁡
z
−
A
≤
z
−
A
9
7
8
syl
⊢
z
∈
ℂ
∧
A
∈
ℂ
→
ℑ
⁡
z
−
A
≤
z
−
A
10
6
9
eqbrtrrd
⊢
z
∈
ℂ
∧
A
∈
ℂ
→
ℑ
⁡
z
−
ℑ
⁡
A
≤
z
−
A
11
4
10
cn1lem
⊢
A
∈
ℂ
∧
x
∈
ℝ
+
→
∃
y
∈
ℝ
+
∀
z
∈
ℂ
z
−
A
<
y
→
ℑ
⁡
z
−
ℑ
⁡
A
<
x