Metamath Proof Explorer


Theorem imcn2

Description: The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Assertion imcn2 A x + y + z z A < y z A < x

Proof

Step Hyp Ref Expression
1 imf :
2 ax-resscn
3 fss : :
4 1 2 3 mp2an :
5 imsub z A z A = z A
6 5 fveq2d z A z A = z A
7 subcl z A z A
8 absimle z A z A z A
9 7 8 syl z A z A z A
10 6 9 eqbrtrrd z A z A z A
11 4 10 cn1lem A x + y + z z A < y z A < x