Metamath Proof Explorer


Theorem imdistand

Description: Distribution of implication with conjunction (deduction form). (Contributed by NM, 27-Aug-2004)

Ref Expression
Hypothesis imdistand.1 φ ψ χ θ
Assertion imdistand φ ψ χ ψ θ

Proof

Step Hyp Ref Expression
1 imdistand.1 φ ψ χ θ
2 imdistan ψ χ θ ψ χ ψ θ
3 1 2 sylib φ ψ χ ψ θ