Metamath Proof Explorer


Theorem imf

Description: Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion imf :

Proof

Step Hyp Ref Expression
1 df-im = x x i
2 imval x x = x i
3 imcl x x
4 2 3 eqeltrrd x x i
5 1 4 fmpti :