Metamath Proof Explorer


Theorem imi

Description: The imaginary part of _i . (Contributed by Scott Fenton, 9-Jun-2006)

Ref Expression
Assertion imi i = 1

Proof

Step Hyp Ref Expression
1 ax-icn i
2 ax-1cn 1
3 1 2 mulcli i 1
4 3 addid2i 0 + i 1 = i 1
5 4 eqcomi i 1 = 0 + i 1
6 5 fveq2i i 1 = 0 + i 1
7 1 mulid1i i 1 = i
8 7 fveq2i i 1 = i
9 0re 0
10 1re 1
11 crim 0 1 0 + i 1 = 1
12 9 10 11 mp2an 0 + i 1 = 1
13 6 8 12 3eqtr3i i = 1