Metamath Proof Explorer


Theorem imimorb

Description: Simplify an implication between implications. (Contributed by Paul Chapman, 17-Nov-2012) (Proof shortened by Wolf Lammen, 3-Apr-2013)

Ref Expression
Assertion imimorb ψ χ φ χ φ ψ χ

Proof

Step Hyp Ref Expression
1 bi2.04 ψ χ φ χ φ ψ χ χ
2 dfor2 ψ χ ψ χ χ
3 2 imbi2i φ ψ χ φ ψ χ χ
4 1 3 bitr4i ψ χ φ χ φ ψ χ