Metamath Proof Explorer


Theorem imnand2

Description: An -> nand relation. (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Assertion imnand2 ¬ φ ψ φ φ ψ ψ

Proof

Step Hyp Ref Expression
1 nannot ¬ φ φ φ
2 nannot ¬ ψ ψ ψ
3 1 2 anbi12i ¬ φ ¬ ψ φ φ ψ ψ
4 3 notbii ¬ ¬ φ ¬ ψ ¬ φ φ ψ ψ
5 iman ¬ φ ψ ¬ ¬ φ ¬ ψ
6 df-nan φ φ ψ ψ ¬ φ φ ψ ψ
7 4 5 6 3bitr4i ¬ φ ψ φ φ ψ ψ