Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Anthony Hart
Propositional Calculus
imnand2
Next ⟩
Predicate Calculus
Metamath Proof Explorer
Ascii
Unicode
Theorem
imnand2
Description:
An
->
nand relation.
(Contributed by
Anthony Hart
, 2-Sep-2011)
Ref
Expression
Assertion
imnand2
⊢
¬
φ
→
ψ
↔
φ
⊼
φ
⊼
ψ
⊼
ψ
Proof
Step
Hyp
Ref
Expression
1
nannot
⊢
¬
φ
↔
φ
⊼
φ
2
nannot
⊢
¬
ψ
↔
ψ
⊼
ψ
3
1
2
anbi12i
⊢
¬
φ
∧
¬
ψ
↔
φ
⊼
φ
∧
ψ
⊼
ψ
4
3
notbii
⊢
¬
¬
φ
∧
¬
ψ
↔
¬
φ
⊼
φ
∧
ψ
⊼
ψ
5
iman
⊢
¬
φ
→
ψ
↔
¬
¬
φ
∧
¬
ψ
6
df-nan
⊢
φ
⊼
φ
⊼
ψ
⊼
ψ
↔
¬
φ
⊼
φ
∧
ψ
⊼
ψ
7
4
5
6
3bitr4i
⊢
¬
φ
→
ψ
↔
φ
⊼
φ
⊼
ψ
⊼
ψ