Metamath Proof Explorer


Theorem imp5a

Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009) (Proof shortened by Wolf Lammen, 2-Aug-2022)

Ref Expression
Hypothesis imp5.1 φ ψ χ θ τ η
Assertion imp5a φ ψ χ θ τ η

Proof

Step Hyp Ref Expression
1 imp5.1 φ ψ χ θ τ η
2 1 imp5d φ ψ χ θ τ η
3 2 exp31 φ ψ χ θ τ η