Metamath Proof Explorer


Theorem impbid2

Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007) (Proof shortened by Wolf Lammen, 27-Sep-2013)

Ref Expression
Hypotheses impbid2.1 ψ χ
impbid2.2 φ χ ψ
Assertion impbid2 φ ψ χ

Proof

Step Hyp Ref Expression
1 impbid2.1 ψ χ
2 impbid2.2 φ χ ψ
3 2 1 impbid1 φ χ ψ
4 3 bicomd φ ψ χ