Metamath Proof Explorer


Theorem impcon4bid

Description: A variation on impbid with contraposition. (Contributed by Jeff Hankins, 3-Jul-2009)

Ref Expression
Hypotheses impcon4bid.1 φ ψ χ
impcon4bid.2 φ ¬ ψ ¬ χ
Assertion impcon4bid φ ψ χ

Proof

Step Hyp Ref Expression
1 impcon4bid.1 φ ψ χ
2 impcon4bid.2 φ ¬ ψ ¬ χ
3 2 con4d φ χ ψ
4 1 3 impbid φ ψ χ