Metamath Proof Explorer


Theorem impimprbi

Description: An implication and its reverse are equivalent exactly when both operands are equivalent. The right hand side resembles that of dfbi2 , but <-> is a weaker operator than /\ . Note that an implication and its reverse can never be simultaneously false, because of pm2.521 . (Contributed by Wolf Lammen, 18-Dec-2023)

Ref Expression
Assertion impimprbi φ ψ φ ψ ψ φ

Proof

Step Hyp Ref Expression
1 dfbi2 φ ψ φ ψ ψ φ
2 pm5.1 φ ψ ψ φ φ ψ ψ φ
3 1 2 sylbi φ ψ φ ψ ψ φ
4 impbi φ ψ ψ φ φ ψ
5 pm2.521 ¬ φ ψ ψ φ
6 5 pm2.24d ¬ φ ψ ¬ ψ φ φ ψ
7 4 6 bija φ ψ ψ φ φ ψ
8 3 7 impbii φ ψ φ ψ ψ φ