Metamath Proof Explorer


Theorem imsdf

Description: Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses imsdfn.1 X = BaseSet U
imsdfn.8 D = IndMet U
Assertion imsdf U NrmCVec D : X × X

Proof

Step Hyp Ref Expression
1 imsdfn.1 X = BaseSet U
2 imsdfn.8 D = IndMet U
3 eqid norm CV U = norm CV U
4 1 3 nvf U NrmCVec norm CV U : X
5 eqid - v U = - v U
6 1 5 nvmf U NrmCVec - v U : X × X X
7 fco norm CV U : X - v U : X × X X norm CV U - v U : X × X
8 4 6 7 syl2anc U NrmCVec norm CV U - v U : X × X
9 5 3 2 imsval U NrmCVec D = norm CV U - v U
10 9 feq1d U NrmCVec D : X × X norm CV U - v U : X × X
11 8 10 mpbird U NrmCVec D : X × X