Metamath Proof Explorer


Theorem imsdval2

Description: Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses imsdval2.1 X = BaseSet U
imsdval2.2 G = + v U
imsdval2.4 S = 𝑠OLD U
imsdval2.6 N = norm CV U
imsdval2.8 D = IndMet U
Assertion imsdval2 U NrmCVec A X B X A D B = N A G -1 S B

Proof

Step Hyp Ref Expression
1 imsdval2.1 X = BaseSet U
2 imsdval2.2 G = + v U
3 imsdval2.4 S = 𝑠OLD U
4 imsdval2.6 N = norm CV U
5 imsdval2.8 D = IndMet U
6 eqid - v U = - v U
7 1 6 4 5 imsdval U NrmCVec A X B X A D B = N A - v U B
8 1 2 3 6 nvmval U NrmCVec A X B X A - v U B = A G -1 S B
9 8 fveq2d U NrmCVec A X B X N A - v U B = N A G -1 S B
10 7 9 eqtrd U NrmCVec A X B X A D B = N A G -1 S B