Metamath Proof Explorer


Theorem imsmet

Description: The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of Kreyszig p. 58. (Contributed by NM, 4-Dec-2006) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses imsmet.1 X=BaseSetU
imsmet.8 D=IndMetU
Assertion imsmet UNrmCVecDMetX

Proof

Step Hyp Ref Expression
1 imsmet.1 X=BaseSetU
2 imsmet.8 D=IndMetU
3 fveq2 U=ifUNrmCVecU+×absIndMetU=IndMetifUNrmCVecU+×abs
4 fveq2 U=ifUNrmCVecU+×absBaseSetU=BaseSetifUNrmCVecU+×abs
5 1 4 eqtrid U=ifUNrmCVecU+×absX=BaseSetifUNrmCVecU+×abs
6 5 fveq2d U=ifUNrmCVecU+×absMetX=MetBaseSetifUNrmCVecU+×abs
7 3 6 eleq12d U=ifUNrmCVecU+×absIndMetUMetXIndMetifUNrmCVecU+×absMetBaseSetifUNrmCVecU+×abs
8 eqid BaseSetifUNrmCVecU+×abs=BaseSetifUNrmCVecU+×abs
9 eqid +vifUNrmCVecU+×abs=+vifUNrmCVecU+×abs
10 eqid inv+vifUNrmCVecU+×abs=inv+vifUNrmCVecU+×abs
11 eqid 𝑠OLDifUNrmCVecU+×abs=𝑠OLDifUNrmCVecU+×abs
12 eqid 0vecifUNrmCVecU+×abs=0vecifUNrmCVecU+×abs
13 eqid normCVifUNrmCVecU+×abs=normCVifUNrmCVecU+×abs
14 eqid IndMetifUNrmCVecU+×abs=IndMetifUNrmCVecU+×abs
15 elimnvu ifUNrmCVecU+×absNrmCVec
16 8 9 10 11 12 13 14 15 imsmetlem IndMetifUNrmCVecU+×absMetBaseSetifUNrmCVecU+×abs
17 7 16 dedth UNrmCVecIndMetUMetX
18 2 17 eqeltrid UNrmCVecDMetX