Metamath Proof Explorer


Theorem imsub

Description: Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005)

Ref Expression
Assertion imsub A B A B = A B

Proof

Step Hyp Ref Expression
1 negcl B B
2 imadd A B A + B = A + B
3 1 2 sylan2 A B A + B = A + B
4 imneg B B = B
5 4 adantl A B B = B
6 5 oveq2d A B A + B = A + B
7 3 6 eqtrd A B A + B = A + B
8 negsub A B A + B = A B
9 8 fveq2d A B A + B = A B
10 imcl A A
11 10 recnd A A
12 imcl B B
13 12 recnd B B
14 negsub A B A + B = A B
15 11 13 14 syl2an A B A + B = A B
16 7 9 15 3eqtr3d A B A B = A B