Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Real and imaginary parts; conjugate
imsub
Next ⟩
immul
Metamath Proof Explorer
Ascii
Unicode
Theorem
imsub
Description:
Imaginary part distributes over subtraction.
(Contributed by
NM
, 18-Mar-2005)
Ref
Expression
Assertion
imsub
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
ℑ
⁡
A
−
B
=
ℑ
⁡
A
−
ℑ
⁡
B
Proof
Step
Hyp
Ref
Expression
1
negcl
⊢
B
∈
ℂ
→
−
B
∈
ℂ
2
imadd
⊢
A
∈
ℂ
∧
−
B
∈
ℂ
→
ℑ
⁡
A
+
−
B
=
ℑ
⁡
A
+
ℑ
⁡
−
B
3
1
2
sylan2
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
ℑ
⁡
A
+
−
B
=
ℑ
⁡
A
+
ℑ
⁡
−
B
4
imneg
⊢
B
∈
ℂ
→
ℑ
⁡
−
B
=
−
ℑ
⁡
B
5
4
adantl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
ℑ
⁡
−
B
=
−
ℑ
⁡
B
6
5
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
ℑ
⁡
A
+
ℑ
⁡
−
B
=
ℑ
⁡
A
+
−
ℑ
⁡
B
7
3
6
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
ℑ
⁡
A
+
−
B
=
ℑ
⁡
A
+
−
ℑ
⁡
B
8
negsub
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
−
B
=
A
−
B
9
8
fveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
ℑ
⁡
A
+
−
B
=
ℑ
⁡
A
−
B
10
imcl
⊢
A
∈
ℂ
→
ℑ
⁡
A
∈
ℝ
11
10
recnd
⊢
A
∈
ℂ
→
ℑ
⁡
A
∈
ℂ
12
imcl
⊢
B
∈
ℂ
→
ℑ
⁡
B
∈
ℝ
13
12
recnd
⊢
B
∈
ℂ
→
ℑ
⁡
B
∈
ℂ
14
negsub
⊢
ℑ
⁡
A
∈
ℂ
∧
ℑ
⁡
B
∈
ℂ
→
ℑ
⁡
A
+
−
ℑ
⁡
B
=
ℑ
⁡
A
−
ℑ
⁡
B
15
11
13
14
syl2an
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
ℑ
⁡
A
+
−
ℑ
⁡
B
=
ℑ
⁡
A
−
ℑ
⁡
B
16
7
9
15
3eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
ℑ
⁡
A
−
B
=
ℑ
⁡
A
−
ℑ
⁡
B