Metamath Proof Explorer


Theorem imval2

Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion imval2 A A = A A 2 i

Proof

Step Hyp Ref Expression
1 imcl A A
2 1 recnd A A
3 2mulicn 2 i
4 2muline0 2 i 0
5 divcan4 A 2 i 2 i 0 A 2 i 2 i = A
6 3 4 5 mp3an23 A A 2 i 2 i = A
7 2 6 syl A A 2 i 2 i = A
8 recl A A
9 8 recnd A A
10 ax-icn i
11 mulcl i A i A
12 10 2 11 sylancr A i A
13 9 12 addcld A A + i A
14 13 9 12 subsubd A A + i A - A i A = A + i A - A + i A
15 replim A A = A + i A
16 remim A A = A i A
17 15 16 oveq12d A A A = A + i A - A i A
18 12 2timesd A 2 i A = i A + i A
19 mulcom A 2 i A 2 i = 2 i A
20 3 19 mpan2 A A 2 i = 2 i A
21 2cn 2
22 mulass 2 i A 2 i A = 2 i A
23 21 10 22 mp3an12 A 2 i A = 2 i A
24 20 23 eqtrd A A 2 i = 2 i A
25 2 24 syl A A 2 i = 2 i A
26 9 12 pncan2d A A + i A - A = i A
27 26 oveq1d A A + i A - A + i A = i A + i A
28 18 25 27 3eqtr4d A A 2 i = A + i A - A + i A
29 14 17 28 3eqtr4rd A A 2 i = A A
30 29 oveq1d A A 2 i 2 i = A A 2 i
31 7 30 eqtr3d A A = A A 2 i