Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
The intersection of two classes
in4
Next ⟩
inindi
Metamath Proof Explorer
Ascii
Unicode
Theorem
in4
Description:
Rearrangement of intersection of 4 classes.
(Contributed by
NM
, 21-Apr-2001)
Ref
Expression
Assertion
in4
⊢
A
∩
B
∩
C
∩
D
=
A
∩
C
∩
B
∩
D
Proof
Step
Hyp
Ref
Expression
1
in12
⊢
B
∩
C
∩
D
=
C
∩
B
∩
D
2
1
ineq2i
⊢
A
∩
B
∩
C
∩
D
=
A
∩
C
∩
B
∩
D
3
inass
⊢
A
∩
B
∩
C
∩
D
=
A
∩
B
∩
C
∩
D
4
inass
⊢
A
∩
C
∩
B
∩
D
=
A
∩
C
∩
B
∩
D
5
2
3
4
3eqtr4i
⊢
A
∩
B
∩
C
∩
D
=
A
∩
C
∩
B
∩
D