Metamath Proof Explorer


Theorem inass

Description: Associative law for intersection of classes. Exercise 9 of TakeutiZaring p. 17. (Contributed by NM, 3-May-1994)

Ref Expression
Assertion inass A B C = A B C

Proof

Step Hyp Ref Expression
1 anass x A x B x C x A x B x C
2 elin x B C x B x C
3 2 anbi2i x A x B C x A x B x C
4 1 3 bitr4i x A x B x C x A x B C
5 elin x A B x A x B
6 5 anbi1i x A B x C x A x B x C
7 elin x A B C x A x B C
8 4 6 7 3bitr4i x A B x C x A B C
9 8 ineqri A B C = A B C