| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inawina |
|
| 2 |
|
winaon |
|
| 3 |
|
winalim |
|
| 4 |
|
r1lim |
|
| 5 |
2 3 4
|
syl2anc |
|
| 6 |
5
|
eleq2d |
|
| 7 |
|
eliun |
|
| 8 |
6 7
|
bitrdi |
|
| 9 |
|
onelon |
|
| 10 |
2 9
|
sylan |
|
| 11 |
|
r1pw |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
limsuc |
|
| 14 |
3 13
|
syl |
|
| 15 |
|
r1ord2 |
|
| 16 |
2 15
|
syl |
|
| 17 |
14 16
|
sylbid |
|
| 18 |
17
|
imp |
|
| 19 |
18
|
sseld |
|
| 20 |
12 19
|
sylbid |
|
| 21 |
20
|
rexlimdva |
|
| 22 |
8 21
|
sylbid |
|
| 23 |
1 22
|
syl |
|
| 24 |
23
|
imp |
|
| 25 |
|
elssuni |
|
| 26 |
|
r1tr2 |
|
| 27 |
25 26
|
sstrdi |
|
| 28 |
24 27
|
jccil |
|
| 29 |
28
|
ralrimiva |
|
| 30 |
1 2
|
syl |
|
| 31 |
|
r1suc |
|
| 32 |
31
|
eleq2d |
|
| 33 |
30 32
|
syl |
|
| 34 |
|
rankr1ai |
|
| 35 |
33 34
|
biimtrrdi |
|
| 36 |
35
|
imp |
|
| 37 |
|
fvex |
|
| 38 |
37
|
elsuc |
|
| 39 |
36 38
|
sylib |
|
| 40 |
39
|
orcomd |
|
| 41 |
|
fvex |
|
| 42 |
|
elpwi |
|
| 43 |
42
|
ad2antlr |
|
| 44 |
|
ssdomg |
|
| 45 |
41 43 44
|
mpsyl |
|
| 46 |
|
rankcf |
|
| 47 |
|
fveq2 |
|
| 48 |
|
elina |
|
| 49 |
48
|
simp2bi |
|
| 50 |
47 49
|
sylan9eqr |
|
| 51 |
50
|
breq2d |
|
| 52 |
46 51
|
mtbii |
|
| 53 |
|
inar1 |
|
| 54 |
|
sdomentr |
|
| 55 |
54
|
expcom |
|
| 56 |
53 55
|
syl |
|
| 57 |
56
|
adantr |
|
| 58 |
52 57
|
mtod |
|
| 59 |
58
|
adantlr |
|
| 60 |
|
bren2 |
|
| 61 |
45 59 60
|
sylanbrc |
|
| 62 |
61
|
ex |
|
| 63 |
|
r1elwf |
|
| 64 |
33 63
|
biimtrrdi |
|
| 65 |
64
|
imp |
|
| 66 |
|
r1fnon |
|
| 67 |
66
|
fndmi |
|
| 68 |
30 67
|
eleqtrrdi |
|
| 69 |
68
|
adantr |
|
| 70 |
|
rankr1ag |
|
| 71 |
65 69 70
|
syl2anc |
|
| 72 |
71
|
biimprd |
|
| 73 |
62 72
|
orim12d |
|
| 74 |
40 73
|
mpd |
|
| 75 |
74
|
ralrimiva |
|
| 76 |
|
eltsk2g |
|
| 77 |
41 76
|
ax-mp |
|
| 78 |
29 75 77
|
sylanbrc |
|