Metamath Proof Explorer


Theorem inatsk

Description: ( R1A ) for A a strongly inaccessible cardinal is a Tarski class. (Contributed by Mario Carneiro, 8-Jun-2013)

Ref Expression
Assertion inatsk A Inacc R1 A Tarski

Proof

Step Hyp Ref Expression
1 inawina A Inacc A Inacc 𝑤
2 winaon A Inacc 𝑤 A On
3 winalim A Inacc 𝑤 Lim A
4 r1lim A On Lim A R1 A = y A R1 y
5 2 3 4 syl2anc A Inacc 𝑤 R1 A = y A R1 y
6 5 eleq2d A Inacc 𝑤 x R1 A x y A R1 y
7 eliun x y A R1 y y A x R1 y
8 6 7 bitrdi A Inacc 𝑤 x R1 A y A x R1 y
9 onelon A On y A y On
10 2 9 sylan A Inacc 𝑤 y A y On
11 r1pw y On x R1 y 𝒫 x R1 suc y
12 10 11 syl A Inacc 𝑤 y A x R1 y 𝒫 x R1 suc y
13 limsuc Lim A y A suc y A
14 3 13 syl A Inacc 𝑤 y A suc y A
15 r1ord2 A On suc y A R1 suc y R1 A
16 2 15 syl A Inacc 𝑤 suc y A R1 suc y R1 A
17 14 16 sylbid A Inacc 𝑤 y A R1 suc y R1 A
18 17 imp A Inacc 𝑤 y A R1 suc y R1 A
19 18 sseld A Inacc 𝑤 y A 𝒫 x R1 suc y 𝒫 x R1 A
20 12 19 sylbid A Inacc 𝑤 y A x R1 y 𝒫 x R1 A
21 20 rexlimdva A Inacc 𝑤 y A x R1 y 𝒫 x R1 A
22 8 21 sylbid A Inacc 𝑤 x R1 A 𝒫 x R1 A
23 1 22 syl A Inacc x R1 A 𝒫 x R1 A
24 23 imp A Inacc x R1 A 𝒫 x R1 A
25 elssuni 𝒫 x R1 A 𝒫 x R1 A
26 r1tr2 R1 A R1 A
27 25 26 sstrdi 𝒫 x R1 A 𝒫 x R1 A
28 24 27 jccil A Inacc x R1 A 𝒫 x R1 A 𝒫 x R1 A
29 28 ralrimiva A Inacc x R1 A 𝒫 x R1 A 𝒫 x R1 A
30 1 2 syl A Inacc A On
31 r1suc A On R1 suc A = 𝒫 R1 A
32 31 eleq2d A On x R1 suc A x 𝒫 R1 A
33 30 32 syl A Inacc x R1 suc A x 𝒫 R1 A
34 rankr1ai x R1 suc A rank x suc A
35 33 34 syl6bir A Inacc x 𝒫 R1 A rank x suc A
36 35 imp A Inacc x 𝒫 R1 A rank x suc A
37 fvex rank x V
38 37 elsuc rank x suc A rank x A rank x = A
39 36 38 sylib A Inacc x 𝒫 R1 A rank x A rank x = A
40 39 orcomd A Inacc x 𝒫 R1 A rank x = A rank x A
41 fvex R1 A V
42 elpwi x 𝒫 R1 A x R1 A
43 42 ad2antlr A Inacc x 𝒫 R1 A rank x = A x R1 A
44 ssdomg R1 A V x R1 A x R1 A
45 41 43 44 mpsyl A Inacc x 𝒫 R1 A rank x = A x R1 A
46 rankcf ¬ x cf rank x
47 fveq2 rank x = A cf rank x = cf A
48 elina A Inacc A cf A = A x A 𝒫 x A
49 48 simp2bi A Inacc cf A = A
50 47 49 sylan9eqr A Inacc rank x = A cf rank x = A
51 50 breq2d A Inacc rank x = A x cf rank x x A
52 46 51 mtbii A Inacc rank x = A ¬ x A
53 inar1 A Inacc R1 A A
54 sdomentr x R1 A R1 A A x A
55 54 expcom R1 A A x R1 A x A
56 53 55 syl A Inacc x R1 A x A
57 56 adantr A Inacc rank x = A x R1 A x A
58 52 57 mtod A Inacc rank x = A ¬ x R1 A
59 58 adantlr A Inacc x 𝒫 R1 A rank x = A ¬ x R1 A
60 bren2 x R1 A x R1 A ¬ x R1 A
61 45 59 60 sylanbrc A Inacc x 𝒫 R1 A rank x = A x R1 A
62 61 ex A Inacc x 𝒫 R1 A rank x = A x R1 A
63 r1elwf x R1 suc A x R1 On
64 33 63 syl6bir A Inacc x 𝒫 R1 A x R1 On
65 64 imp A Inacc x 𝒫 R1 A x R1 On
66 r1fnon R1 Fn On
67 66 fndmi dom R1 = On
68 30 67 eleqtrrdi A Inacc A dom R1
69 68 adantr A Inacc x 𝒫 R1 A A dom R1
70 rankr1ag x R1 On A dom R1 x R1 A rank x A
71 65 69 70 syl2anc A Inacc x 𝒫 R1 A x R1 A rank x A
72 71 biimprd A Inacc x 𝒫 R1 A rank x A x R1 A
73 62 72 orim12d A Inacc x 𝒫 R1 A rank x = A rank x A x R1 A x R1 A
74 40 73 mpd A Inacc x 𝒫 R1 A x R1 A x R1 A
75 74 ralrimiva A Inacc x 𝒫 R1 A x R1 A x R1 A
76 eltsk2g R1 A V R1 A Tarski x R1 A 𝒫 x R1 A 𝒫 x R1 A x 𝒫 R1 A x R1 A x R1 A
77 41 76 ax-mp R1 A Tarski x R1 A 𝒫 x R1 A 𝒫 x R1 A x 𝒫 R1 A x R1 A x R1 A
78 29 75 77 sylanbrc A Inacc R1 A Tarski