Metamath Proof Explorer


Theorem inawina

Description: Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion inawina A Inacc A Inacc 𝑤

Proof

Step Hyp Ref Expression
1 cfon cf A On
2 eleq1 cf A = A cf A On A On
3 1 2 mpbii cf A = A A On
4 3 3ad2ant2 A cf A = A x A 𝒫 x A A On
5 idd A On A A
6 idd A On cf A = A cf A = A
7 inawinalem A On x A 𝒫 x A x A y A x y
8 5 6 7 3anim123d A On A cf A = A x A 𝒫 x A A cf A = A x A y A x y
9 4 8 mpcom A cf A = A x A 𝒫 x A A cf A = A x A y A x y
10 elina A Inacc A cf A = A x A 𝒫 x A
11 elwina A Inacc 𝑤 A cf A = A x A y A x y
12 9 10 11 3imtr4i A Inacc A Inacc 𝑤