Step |
Hyp |
Ref |
Expression |
1 |
|
unifi |
|
2 |
|
hashcl |
|
3 |
2
|
nn0cnd |
|
4 |
1 3
|
syl |
|
5 |
|
simpl |
|
6 |
|
pwfi |
|
7 |
5 6
|
sylib |
|
8 |
|
diffi |
|
9 |
7 8
|
syl |
|
10 |
|
1cnd |
|
11 |
10
|
negcld |
|
12 |
|
eldifsni |
|
13 |
12
|
adantl |
|
14 |
|
eldifi |
|
15 |
|
elpwi |
|
16 |
14 15
|
syl |
|
17 |
|
ssfi |
|
18 |
5 16 17
|
syl2an |
|
19 |
|
hashnncl |
|
20 |
18 19
|
syl |
|
21 |
13 20
|
mpbird |
|
22 |
|
nnm1nn0 |
|
23 |
21 22
|
syl |
|
24 |
11 23
|
expcld |
|
25 |
16
|
adantl |
|
26 |
|
simplr |
|
27 |
25 26
|
sstrd |
|
28 |
|
unifi |
|
29 |
18 27 28
|
syl2anc |
|
30 |
|
intssuni |
|
31 |
13 30
|
syl |
|
32 |
29 31
|
ssfid |
|
33 |
|
hashcl |
|
34 |
32 33
|
syl |
|
35 |
34
|
nn0cnd |
|
36 |
24 35
|
mulcld |
|
37 |
9 36
|
fsumcl |
|
38 |
|
disjdif |
|
39 |
38
|
a1i |
|
40 |
|
0elpw |
|
41 |
|
snssi |
|
42 |
40 41
|
ax-mp |
|
43 |
|
undif |
|
44 |
42 43
|
mpbi |
|
45 |
44
|
eqcomi |
|
46 |
45
|
a1i |
|
47 |
|
1cnd |
|
48 |
47
|
negcld |
|
49 |
5 15 17
|
syl2an |
|
50 |
|
hashcl |
|
51 |
49 50
|
syl |
|
52 |
48 51
|
expcld |
|
53 |
1
|
adantr |
|
54 |
|
inss1 |
|
55 |
|
ssfi |
|
56 |
53 54 55
|
sylancl |
|
57 |
|
hashcl |
|
58 |
56 57
|
syl |
|
59 |
58
|
nn0cnd |
|
60 |
52 59
|
mulcld |
|
61 |
39 46 7 60
|
fsumsplit |
|
62 |
|
inidm |
|
63 |
62
|
fveq2i |
|
64 |
63
|
oveq2i |
|
65 |
4
|
subidd |
|
66 |
64 65
|
eqtrid |
|
67 |
|
incexclem |
|
68 |
1 67
|
syldan |
|
69 |
66 68
|
eqtr3d |
|
70 |
4 37
|
negsubd |
|
71 |
|
0ex |
|
72 |
|
1cnd |
|
73 |
72 4
|
mulcld |
|
74 |
|
fveq2 |
|
75 |
|
hash0 |
|
76 |
74 75
|
eqtrdi |
|
77 |
76
|
oveq2d |
|
78 |
|
neg1cn |
|
79 |
|
exp0 |
|
80 |
78 79
|
ax-mp |
|
81 |
77 80
|
eqtrdi |
|
82 |
|
rint0 |
|
83 |
82
|
fveq2d |
|
84 |
81 83
|
oveq12d |
|
85 |
84
|
sumsn |
|
86 |
71 73 85
|
sylancr |
|
87 |
4
|
mulid2d |
|
88 |
86 87
|
eqtr2d |
|
89 |
9 36
|
fsumneg |
|
90 |
|
expm1t |
|
91 |
11 21 90
|
syl2anc |
|
92 |
24 11
|
mulcomd |
|
93 |
24
|
mulm1d |
|
94 |
91 92 93
|
3eqtrd |
|
95 |
25
|
unissd |
|
96 |
31 95
|
sstrd |
|
97 |
|
sseqin2 |
|
98 |
96 97
|
sylib |
|
99 |
98
|
fveq2d |
|
100 |
94 99
|
oveq12d |
|
101 |
24 35
|
mulneg1d |
|
102 |
100 101
|
eqtr2d |
|
103 |
102
|
sumeq2dv |
|
104 |
89 103
|
eqtr3d |
|
105 |
88 104
|
oveq12d |
|
106 |
70 105
|
eqtr3d |
|
107 |
61 69 106
|
3eqtr4rd |
|
108 |
4 37 107
|
subeq0d |
|