Step |
Hyp |
Ref |
Expression |
1 |
|
incexc |
|
2 |
|
hashcl |
|
3 |
2
|
ad2antrr |
|
4 |
3
|
nn0zd |
|
5 |
|
simpl |
|
6 |
|
elpwi |
|
7 |
|
ssdomg |
|
8 |
7
|
imp |
|
9 |
5 6 8
|
syl2an |
|
10 |
|
hashdomi |
|
11 |
9 10
|
syl |
|
12 |
|
fznn |
|
13 |
12
|
rbaibd |
|
14 |
4 11 13
|
syl2anc |
|
15 |
|
ssfi |
|
16 |
5 6 15
|
syl2an |
|
17 |
|
hashnncl |
|
18 |
16 17
|
syl |
|
19 |
14 18
|
bitr2d |
|
20 |
|
df-ne |
|
21 |
|
risset |
|
22 |
19 20 21
|
3bitr3g |
|
23 |
|
velsn |
|
24 |
23
|
notbii |
|
25 |
|
eqcom |
|
26 |
25
|
rexbii |
|
27 |
22 24 26
|
3bitr4g |
|
28 |
27
|
rabbidva |
|
29 |
|
dfdif2 |
|
30 |
|
iunrab |
|
31 |
28 29 30
|
3eqtr4g |
|
32 |
31
|
sumeq1d |
|
33 |
1 32
|
eqtrd |
|
34 |
|
fzfid |
|
35 |
|
simpll |
|
36 |
|
pwfi |
|
37 |
35 36
|
sylib |
|
38 |
|
ssrab2 |
|
39 |
|
ssfi |
|
40 |
37 38 39
|
sylancl |
|
41 |
|
fveqeq2 |
|
42 |
41
|
elrab |
|
43 |
42
|
simprbi |
|
44 |
43
|
adantl |
|
45 |
44
|
ralrimiva |
|
46 |
45
|
ralrimiva |
|
47 |
|
invdisj |
|
48 |
46 47
|
syl |
|
49 |
44
|
oveq1d |
|
50 |
49
|
oveq2d |
|
51 |
50
|
oveq1d |
|
52 |
|
1cnd |
|
53 |
52
|
negcld |
|
54 |
|
elfznn |
|
55 |
54
|
adantl |
|
56 |
|
nnm1nn0 |
|
57 |
55 56
|
syl |
|
58 |
53 57
|
expcld |
|
59 |
58
|
adantr |
|
60 |
|
unifi |
|
61 |
60
|
ad2antrr |
|
62 |
55
|
adantr |
|
63 |
44 62
|
eqeltrd |
|
64 |
35
|
adantr |
|
65 |
|
elrabi |
|
66 |
65
|
adantl |
|
67 |
|
elpwi |
|
68 |
66 67
|
syl |
|
69 |
64 68
|
ssfid |
|
70 |
|
hashnncl |
|
71 |
69 70
|
syl |
|
72 |
63 71
|
mpbid |
|
73 |
|
intssuni |
|
74 |
72 73
|
syl |
|
75 |
68
|
unissd |
|
76 |
74 75
|
sstrd |
|
77 |
61 76
|
ssfid |
|
78 |
|
hashcl |
|
79 |
77 78
|
syl |
|
80 |
79
|
nn0cnd |
|
81 |
59 80
|
mulcld |
|
82 |
51 81
|
eqeltrd |
|
83 |
82
|
anasss |
|
84 |
34 40 48 83
|
fsumiun |
|
85 |
51
|
sumeq2dv |
|
86 |
40 58 80
|
fsummulc2 |
|
87 |
85 86
|
eqtr4d |
|
88 |
87
|
sumeq2dv |
|
89 |
33 84 88
|
3eqtrd |
|