Metamath Proof Explorer


Theorem ind1

Description: Value of the indicator function where it is 1 . (Contributed by Thierry Arnoux, 14-Aug-2017)

Ref Expression
Assertion ind1 O V A O X A 𝟙 O A X = 1

Proof

Step Hyp Ref Expression
1 simp2 O V A O X A A O
2 simp3 O V A O X A X A
3 1 2 sseldd O V A O X A X O
4 indfval O V A O X O 𝟙 O A X = if X A 1 0
5 3 4 syld3an3 O V A O X A 𝟙 O A X = if X A 1 0
6 iftrue X A if X A 1 0 = 1
7 6 3ad2ant3 O V A O X A if X A 1 0 = 1
8 5 7 eqtrd O V A O X A 𝟙 O A X = 1