Metamath Proof Explorer


Theorem indcardi

Description: Indirect strong induction on the cardinality of a finite or numerable set. (Contributed by Stefan O'Rear, 24-Aug-2015)

Ref Expression
Hypotheses indcardi.a φ A V
indcardi.b φ T dom card
indcardi.c φ R T y S R χ ψ
indcardi.d x = y ψ χ
indcardi.e x = A ψ θ
indcardi.f x = y R = S
indcardi.g x = A R = T
Assertion indcardi φ θ

Proof

Step Hyp Ref Expression
1 indcardi.a φ A V
2 indcardi.b φ T dom card
3 indcardi.c φ R T y S R χ ψ
4 indcardi.d x = y ψ χ
5 indcardi.e x = A ψ θ
6 indcardi.f x = y R = S
7 indcardi.g x = A R = T
8 domrefg T dom card T T
9 2 8 syl φ T T
10 cardon card T On
11 10 a1i φ card T On
12 simpl1 φ card R On card R card T y card S card R S T χ R T φ
13 simpr φ card R On card R card T y card S card R S T χ R T R T
14 simpr φ card R On card R card T R T S R S R
15 simpl1 φ card R On card R card T R T S R φ
16 15 2 syl φ card R On card R card T R T S R T dom card
17 sdomdom S R S R
18 simpl3 φ card R On card R card T R T S R R T
19 domtr S R R T S T
20 17 18 19 syl2an2 φ card R On card R card T R T S R S T
21 numdom T dom card S T S dom card
22 16 20 21 syl2anc φ card R On card R card T R T S R S dom card
23 numdom T dom card R T R dom card
24 16 18 23 syl2anc φ card R On card R card T R T S R R dom card
25 cardsdom2 S dom card R dom card card S card R S R
26 22 24 25 syl2anc φ card R On card R card T R T S R card S card R S R
27 14 26 mpbird φ card R On card R card T R T S R card S card R
28 id card S card R S T χ card S card R S T χ
29 28 com3l card S card R S T card S card R S T χ χ
30 27 20 29 sylc φ card R On card R card T R T S R card S card R S T χ χ
31 30 ex φ card R On card R card T R T S R card S card R S T χ χ
32 31 com23 φ card R On card R card T R T card S card R S T χ S R χ
33 32 alimdv φ card R On card R card T R T y card S card R S T χ y S R χ
34 33 3exp φ card R On card R card T R T y card S card R S T χ y S R χ
35 34 com34 φ card R On card R card T y card S card R S T χ R T y S R χ
36 35 3imp1 φ card R On card R card T y card S card R S T χ R T y S R χ
37 12 13 36 3 syl3anc φ card R On card R card T y card S card R S T χ R T ψ
38 37 ex φ card R On card R card T y card S card R S T χ R T ψ
39 6 breq1d x = y R T S T
40 39 4 imbi12d x = y R T ψ S T χ
41 7 breq1d x = A R T T T
42 41 5 imbi12d x = A R T ψ T T θ
43 6 fveq2d x = y card R = card S
44 7 fveq2d x = A card R = card T
45 1 11 38 40 42 43 44 tfisi φ T T θ
46 9 45 mpd φ θ